Approches fondées sur les chaînes de caractères pour le Recherche d'Information

Mathieu Roche

Cours ECD (Recherche d'Information et Langage Naturel)

2008/2009

Utilisation des informations sur les chaînes de caractères en RI

- Utiliser des connaissances sémantiques pour améliorer les méthodes de classification (cf cours précédent).
 - De telles connaissances existent dans le domaine général.
 - Limite : domaines spécialisés.

Lien entre les chaînes de caractères et la "sémantique" ?

Utilisation des informations sur les chaînes de caractères en RI

- Utiliser des méthodes fondées sur les chaînes de caractères pour :
 - Apporter des connaissances sémantiques (pour le regroupement de mots "sémantiquement" proches),
 - Normaliser les textes (correction orthographique, etc.),
 - Reconnaissance des langues,
 - Identification de plagiat (proximité de marques déposées à l'INPI),

Suffixes/Préfixes

- But : vérifier qu'une chaîne de caractères Ch1 se retrouve :
 - au début d'une chaîne de caractères *Ch2* (**préfixe**),
 - à la fin d'une chaîne de caractères Ch2 (suffixe).
- Exemples de similarités :
 - Préfixe -> Ch1 = chat / Ch2 = chaton
 - Suffixe -> Ch1 = suivre / Ch2 = poursuivre

Suffixes/Préfixes

- Avantage : efficace sur certains domaines
 spécialisés tels que la médecine [Nakache et al. 2006]
- Les suffixes indicateurs d'états pathologiques : 'ite' pour désigner l'inflammation (pancréatite, appendicite, gastrite), 'algie' ou 'odynie' pour la douleur.
- Les suffixes indicateurs de **gestes techniques** : 'centèse' signifie ponction, 'ectomie' est propre à l'ablation, 'plastie' la réparation.

Suffixes/Préfixes

- Utilisation de ces connaissances (suffixes/préfixes) sur les chaînes de caractères comme connaissance du domaine.
- Désuffixation pour améliorer les méthodes de classification [Nakache et al., 2006]
- Limite: chat / chateau!

- Il existe de nombreuses mesures de similarité (pas seulement au niveau des méthodes de mise en correspondance de schémas).
- Exemple avec la distance « Edit distance » (notée E) = somme minimale du coût des opérations qu'il faut effectuer pour transformer Ch1 en Ch2.

Opérations : suppression, insertion, remplacement.

Remarque: L'« Edit Distance » est aussi appelé « Distance de Levenshtein »

Exemple : E(gréviste,grève) = 4

Ch1 :	g	r	é	V	i	S	t	е
Opérations	:		Remplacement		Insertion	Insertion	Insertion	
Ch2:	g	r	è	V				e

Mesure prenant en compte *E* : la mesure String Matching (*SM*) de Maedche et Staab :

$$SM(Ch1,Ch2) = max[0; (min(|Ch1|,|Ch2|)-E(Ch1,Ch2))/min(|Ch1|,|Ch2|)]$$

- \sim SM(gréviste,grève) = max(0;(5-4)/5) = 0.2
- Calculer SM(chat,chaton)

Méthode (Distance de Levenshtein) :

Construire une matrice M de n+1 lignes et m+1 colonnes. Initialiser de la première ligne par la matrice ligne [0,1,...., m-1, m] et la première colonne par la matrice colonne [0,1,...., n-1, n]

		С	Н	1	E	N	S
	0	1	2	3	4	5	6
N	1	0	0	0	0	0	0
1	2	0	0	0	0	0	0
С	3	0	0	0	0	0	0
Н	4	0	0	0	0	0	0
E	5	0	0	0	0	0	0

Soit Cout(i, j)=0 si A(i)=B(j) et Cout(i, j)=1 si A(i)!=B(j) On a donc ici la matrice Cout :

	С	Н	1	E	N	S
N	1	1	1	1	0	1
Ť	1	1	0	1	1	1
С	0	1	1	1	1	1
Н	1	0	1	1	1	1
E	1	1	1	0	1	1

On remplit ensuite la matrice M en utilisant la règle suivante M[i, j] est égale au minimum de:

- L'élément directement avant plus 1: M[i-1, j] + 1.
- L'élément directement au dessus plus 1: M[i, j-1] + 1.
- Le diagonal précédent plus le coût: M[i-1, j-1] + Cout(i, j).

		C	Н	1	Ε	N	S
	0	1	2	3	4	5	6
N	1	1	2	3	4	4	5
ı	2	0	0	0	0	0	0
С	3	0	0	0	0	0	0
Н	4	0	0	0	0	0	0
E	5	0	0	0	0	0	0

• • •

		C	Н	I	E	N	S
	0	1	2	3	4	5	6
N	1	1.	2	3	4	4	5
1	2	2	2	2	3	4	5
c	3	2	3	3	3	4	5
Н	4	3	2	3	4	4	5
E	5	4	3	3	3	4	5

Calculer la matrice pour les mots : (chat, chaton)

n-grammes

- Technique des *n*-grammes est utilisée pour calculer le nombre de *n* caractères consécutifs.
- Généralement, la valeur de n varie entre 1 et 5.
 - Exemple de tri-grammes : Ch1 = chat / Ch2 = chaton :
 - tr(Ch1) = {cha, hat}
 - *tr(Ch2)* = {*cha*, *hat*, *ato*, *ton*}
- Mise en oeuvre de mesures fondées sur les tri-grammes tels que la mesure de Lin.

n-grammes

• Mesure Lin (1998):

$$Tri(Ch1,Ch2) = 1/[1+|tr(Ch1)|+|tr(Ch2)|-2X|tr(Ch1)|Intersect|tr(Ch2)|]$$

 \sim *SM*(chat,chaton) = 1/[1+2+4-2X2]=0.33

Avantages et limites des mesures fondées sur les chaînes de caractères

- Mesures fondées sur les chaînes de caractères souvent utilisées pour la mise en correspondances de schémas.
 - Reconnaître que la chaîne de caractères "NomAuteur" est proche de "Nom auteur"

Avantages : indépendant des langues et des domaines.

Solution: utiliser des informations contextuelles (description en langage naturel, noeuds et feuilles, etc.). Combinaison mesures lexicales et contextuelles.
Cours ECD - M2 - 2008/2009

Avantages et limites des mesures fondées sur les chaînes de caractères

- Limite: problème de polysémie.
 Exemple, souris! (cf cours précédent)
 - Par exemple, polysémie sur les acronymes/sigles (cf prochain cours).

Exemple: JO = "Jeux Olympiques" ou "Journal Officiel"

- Difficultés :
 - Mise à jour nécessaire des lexiques utilisés (acronymes récents).
 - Choix de l'acronyme adapté parmi une liste donnée.
 - Connaître la définition des acronymes des domaines spécialisés

 Cours ECD - M2 – 2008/2009

Reconnaissance de la langue et Recherche d'Information

- Autre utilisation des n-grammes pour les tâches de classification : **Reconnaissance de la langue** (étape préliminaire très efficace avant les approches de classification).
- Autre méthode de reconnaissance de la langue fondée sur l'identification des mots-outils propres aux langues (par exemple, "the", "and", etc.).

Reconnaissance de la langue et Recherche d'Information

• Exemple à partir d'un corpus parallèle :

Adoption of the Minutes of the previous sitting
Adoption du procès-verbal de la séance précédente

Exercice:

- Calculer les n-grammes sur ces deux phrases parallèles avec n = 2, 4, 10.
- Conclure sur l'utilisation des n-grammes de caractères pour la reconnaissance de la langue sur cet exemple.
- Généraliser ces résultats en donnant des exemples typiques de ngramme du français et de l'anglais