
1

Ensemble Learning

Roberto Esposito
Dipartimento di Informatica

Università di Torino

Acknowledgements

Most of the material is based on Nicholaus Kushmerick’s slides.
You can find his original slideshow at:

www.cs.ucd.ie/staff/nick/home/COMP-4030/L14,15.ppt

Several pictures are taken from the slides by Thomas Dietterich.
You can find his original slideshow (see slides about Bias/Variance theory) at:

http://web.engr.oregonstate.edu/~tgd/classes/534/index.html

2

Reading

•  Dietterich: Ensemble methods in machine
learning (2000).

•  Schapire: A brief introduction to boosting
(1999). [Sec 1-2, 5-6]

•  Dietterich & Bakiri: Solving multiclass
learning problems via error-correcting output
codes (1995). [Skim]

3

Agenda

•  1. What is ensemble learning

•  2. Bagging

•  3. Boosting

•  4. Error-correcting output coding

•  5. Why does ensemble learning work?

4

part 1. What is ensemble learning?
Ensemble learning refers to a collection of methods
that learn a target function by training a number of
individual learners and combining their predictions

[Freund & Schapire, 1995]

5

Ensemble learning

Application
phase

T

T1 T2 … TS

(x, ?) h* = F(h1, h2, …, hS)

(x, y*)

Learning
phase

h1 h2 … hS

different
training sets
and/or
learning algorithms

6

How to make an effective
ensemble?

Two basic decisions when designing
ensembles:

1.  How to generate the base classifiers?
 h1, h2, …

2.  How to integrate/combine them?
 F(h1(x), h2(x), …)

7

Question 2: How to integrate them

• Usually take a weighted vote:
 ensemble(x) = f(∑i wi hi(x))

– wi is the “weight” of hypothesis hi
– wi > wj means “hi is more reliable than hj”
– typically wi>0 (though could have wi<0

meaning “hi is more often wrong than right”)

•  (Fancier schemes are possible but
uncommon)

8

Question 1: How to generate base
classifiers

•  Lots of approaches…
•  A. Bagging
•  B. Boosting
• …

9

PART 2: BAGGing = Bootstrap AGGregation

(Breiman, 1996)

•  for i = 1, 2, …, K:
– Ti  randomly select M training instances

 with replacement
– hi  learn(Ti) [ID3, NB, kNN, neural net, …]

• Now combine the hi together with
uniform voting (wi=1/K for all i)

10

11

decision tree learning algorithm; along the lines of ID3

12

shades of blue/red indicate strength of vote for particular classification

13

14

15

16

Part 3: Boosting
•  Bagging was one simple way to

generate ensemble members with
trivial (uniform) vote weighting

•  Boosting is another….

•  “Boost” as in “give a hand up to”
– suppose A can learn a

hypothesis that is better than
rolling a dice – but perhaps
only a tiny bit better

– Theorem: Boosting A yields
an ensemble with arbitrarily
low error on the training data!

size of ensemble
time

1 2 3 4 5 6 …. 500

50%
49%

ensemble error rate

error rate of A by itself
error rate of flipping a coin

17

Boosting
Idea:
•  assign a weight to every training set instance
•  initially, all instances have the same weight
•  as boosting proceedgs, adjusts weights based on

how well we have predicted data points so far
- data points correctly predicted low weight
- data points mispredicted  high weight

Results: as learning proceeds, the learner is forced to
focus on portions of data space not previously well
predicted

18

19

blue/red = class
size of dot = weight
hypothesis =
horizontal or vertical line

Time=0

20

The WL error is 30%

The ensemble error is 30% (note T=1)

Time=1

21

Time=3

22

Time=7

23

Time=21

Notice the slope of the weak learner
error: AdaBoost creates problems of
increasing difficulty.

24

Time=51

Look, the training error is zero. One
could think that we cannot improve the
test error any more.

25

But… the test error still decreases!

Time=57

26

Time=110

27

28

AdaBoost (Freund and Schapire)

[0,1]

= 1/N

normalize wt to get a
probability distribution pt
 ∑I pt

i = 1

penalize mistakes on
high-weight
instances more

if ht correctly classify xi
 multiply weight by βt < 1
otherwise
 multiple weight by 1

binary class y ∈ {0,1}

weighted vote,
with wt = log(1/β t)

29

Learning from weighted instances?

•  One piece of the puzzle missing…

•  So far, learning algorithms have just taken as input a set
of equally important learning instances.

[0,1]

Reweighting
• What if we also get a weight vector saying how important each instance is?
• Turns out.. it’s very easy to modify most learning algorithms to deal with
weighted instances:

– ID3: Easy to modify entropy, information-gain equations to take into
consideration the weights associated to the examples, rather than to take into
account only the count (which simply assumes all weights=1)
– Naïve Bayes: ditto
– k-NN: multiple vote from an instance by its weight

30

Learning from weighted instances?

Resampling
As an alternative to modify learning algorithms to support weighted
datasets, we can build a new dataset which is not weighted but it
shows the same properties of the weighted one.

wi
i=1

k−1

∑ < n ≤ wi
i=1

k

∑

1.  Let L’ be the empty set
2.  Let (w1,..., wn) be the weights of examples

in L sorted in some fixed order (we
assume wi corresponds to example xi)

3.  Draw n∈[0..1] according to U(0,1)
4.  set L’←L’∪{xk} where k is such that
5.  if enough examples have been drawn

return L’
6.  else go to 3

31

Learning from weighted instances?

•  How many examples are “enough”?

 The higher the number, the better L’ approximate a dataset
following the distribution induced by W.

 As a rule of thumb: |L’|=|L| usually works reasonably well.

•  Why don’t we always use resampling instead of reweighting?

 Resampling can be always applied, unfortunately it requires
more resources and produces less accurate results. One should
use this technique only when it is too costly (or unfeasible) to use
reweighting.

32

Part 4: ECOC
•  So far, we’ve been building the ensemble

by tweaking the set of training instances
•  ECOC involves tweaking the output (class)

to be learned

33

Example: Handwritten number recognition
7, 4, 3, 5, 2

“obvious” approach: learn function: Scribble  {0,1,2,…,9}
  doesn’t work very well (too hard!)

What if we “decompose” the learning task into six “subproblems”?

1. learn an ensemble of classifiers, one specialized to each of the 6 “sub-problems”
2. to classify a new scribble, invoke each ensemble member. then predict the class
whose code-word is closest (Hamming distance) to the predicted code

34

ECOC: Coding

Coding

35

ECOC: Learning

Classifier
for
vl

Learn

Learn
Classifier

for
hl

36

ECOC:Classification
Classifier

for
vl

Classifier
for
hl

Classifier
for
dl

Classifier
for
cc

Classifier
for
ol

Classifier
for
or

1 1 0 0 1 1

Find nearest code…

… and classify
accordingly

37

Error-correcting codes
Suppose we want to send n-bit messages through a noisy channel.
 To ensure robustness to noise, we can map each n-bit message
into an m-bit code (m>n) – note |codes| >> |messages|
 When receive a code, translate it to message corresponding
to the “nearest” (Hamming distance) code
 Key to robustness: assign the codes so that each n-bit “clean”
message is surrounded by a “buffer zone” of similar m-bit codes to
which no other n-bit message is mapped.

blue = message (n bits)
yellow = code (m bits)

white = intended message
red = received code

38

A coding example

Consider a situation in
which three bits are
used to code two
messages. If we select
codewords which differs
in more than two places,
we can detect and
correct any “single digit”
error.

39

Designing code-words for ECOC learning
•  Coding: k labels  m bit codewords
•  Good coding:

–  1. row separation:
want “assigned” codes
to be well-separated by
lots of “unassigned”
codes

–  2. column separation: each bit i
of the codes should be uncorrelated
with all other bits j

•  Selecting good codes is hard!
 (See paper for details)

class 1 2 3 4 5 6 7 8

Monday 0 0 1 0 0 0 1 0

Tuesday 0 0 1 1 1 0 0 1

Wednesday 0 0 1 0 0 0 1 0

Thursday 0 0 0 1 0 1 1 0

Friday 0 1 1 1 1 0 0 0

Saturday 1 1 1 1 0 0 0 1

Sunday 1 1 1 1 0 0 1 1

40

Bad codes

class 1 2 3 4 5 6 7 8

Monday 0 0 1 0 0 0 1 0

Tuesday 0 0 1 1 1 0 0 1

Wednesday 0 0 1 0 0 0 1 0

Thursday 0 0 0 1 0 1 1 0

Friday 0 1 1 1 1 0 0 0

Saturday 1 1 1 1 0 0 0 1

Sunday 1 1 1 1 0 0 1 1

correlated
rows  bad

correlated
columns  bad

The simplest approach is to select the codewords at random. It can
be showed that if 2m>>k then we obtain a “good” code with high
probability (also Dietterich [1995] mentions that such codes seems to
work well in practice).

41

Results

20%

% decrease in error of ECOC over an ID3-like learning algorithm
(oops!)

% decrease in error of ECOC over a neural network learner

42

Part 5: Why do ensemble work?

•  Bias/Variance decomposition
•  A(nother) statistical motivation
•  A motivation based on representational

issues
•  A motivation based on computational

issues

Several reasons justify the ensemble
approach.

43

Bias/Variance decomposition
Let be the average error of an algorithm A on an example x (the
average is taken repeating the algorithm on many learning sets).

It can be showed that can be decomposed as follows:

E[ε(x)]

E[ε(x)]

E[ε(x)] = Bias(x) +Variance(x) + Noise(x)

Let us consider the
following example:

We want to fit a
dataset using a linear
concept.
“Unfortunately” the
true function is
sinusoidal.

Sinusoidal concept

Linear hypothesis

44

Bias Variance Decomposition
Bias Variance

Noise

45

Why do ensembles work? (Bagging)
There exists empirical and theoretical evidence that
Bagging acts as variance reduction machine (i.e., it
reduces the variance part of the error).

The theoretical arguments depends on the behavior of the binomial
distribution when the number of combined hypotheses grows.
Consider the probability p that an hypothesis learnt on a bootstrap replicate
of the original training set classifies incorrectly a given example. The
probability that the majority vote of T hypotheses is wrong is:

Pr T
2






+1 hp are wrong







+ Pr T

2






+ 2 hp are wrong







+ ...+ Pr T hp are wrong{ }

Clearly, the random variable X which count the number of hypotheses that
are wrong when T are extracted is binomially distributed with parameters
(p,T), i.e. X~Bin(p,T)

46

Why do ensembles work? (Bagging)

It is simple to verify that if p<0.5 then the probability
X is larger than T/2 approaches zero as T grows.

47

Why do ensembles work? (AdaBoost)

Empirical evidence suggests that
AdaBoost reduces both the bias and the
variance part of the error.

In particular, it seems that bias is mostly
reduced in early iterations, while
variance in later ones.

48

Lesson learned?

• Use Bagging with low bias and high
variance classifiers (e.g., decision trees,
1-nn, ...)

• Always try AdaBoost (;-)). Most of the
times, it produces excellent results. It has
been showed to work very well with very
simple learners (e.g., decision stumps
inducer) as well as with more complex
ones (e.g. C4.5).

49

Other explanations?

1

2

3

[T. G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Computer
Science, 1857:1–15, 2000.]

50

1. Statistical
•  Given a finite amount of data, many hypothesis are

typically equally good. How can the learning algorithm
select among them?
Optimal Bayes
classifier recipe: take
a weighted majority
vote of all hypotheses
weighted by their
posterior probability.
That is, put most
weight on hypotheses
consistent with the
data.

Hence, ensemble learning may be viewed as an
approximation of the Optimal Bayes rule (which is
provably the best possible classifier).

51

2. Representational
The desired target function may not be
implementable with individual classifiers, but
may be approximated by ensemble averaging

Suppose you want to build a decision boundary
with decision trees The decision boundaries of
decision trees are hyperplanes parallel to the
coordinate axes. By averaging a large number
of such “staircases”, the diagonal decision
boundary can be approximated with arbitrarily
good accuracy

52

Representational (another example)
•  Consider a binary learning task over [0,1] x [0,1],

and the hypothesis space H of “discs”

x1

x2

h1

h2

h3

h1, h2, h3 ∈ H

53

Representational (another example)

•  Hensemble = vote together h1, h2, h3

 Even if target concept ∉ H, a mixture of hypothesis ∈ H
might be highly accurate

x1

x2

hensemble ∉ H

54

Representational (yet another
example)

As we have seen,
despite the fact that
no linear concept
can acquire a
rectangular concept,
AdaBoost was quite
successful in finding
such an hypothesis by
combining several
linear concepts.

55

3. Computational
•  All learning algorithms do some sort of search

through some space of hypotheses to find one
that is “good enough” for the given training data

•  Since interesting hypothesis spaces are huge/
infinite, heuristic search is essential (eg ID3
does greedy search in space of possible
decision trees)

•  So the learner might get stuck in a local
minimum

•  One strategy for avoiding local minima: repeat
the search many times with random restarts
  bagging

56

Summary…
•  Ensembles: basic motivation – creating a

committee of experts is typically more
effective than trying to derive a single super-
genius

•  Key issues:
–  Generation of base models
–  Integration of base models

•  Popular ensemble techniques
–  manipulate training data: bagging and boosting

(ensemble of “experts”, each specializing on different
portions
of the instance space)

–  manipulate output values: error-correcting output
coding (ensemble of “experts”, each predicting 1 bit
of the {multibit} full class label)

•  Why does ensemble learning work?

versus

