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Reading 

•  Dietterich: Ensemble methods in machine 
learning (2000).   

•  Schapire: A brief introduction to boosting 
(1999).    [Sec 1-2, 5-6] 

•  Dietterich & Bakiri:  Solving multiclass 
learning problems via error-correcting output 
codes (1995).   [Skim] 
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Agenda 

•  1. What is ensemble learning 

•  2. Bagging 

•  3. Boosting 

•  4. Error-correcting output coding 

•  5. Why does ensemble learning work? 
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part 1. What is ensemble learning? 
Ensemble learning refers to a collection of methods 
that learn a target function by training a number of 
individual learners and combining their predictions 

[Freund & Schapire, 1995] 
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Ensemble learning 
 

Application 
phase  

T 

T1 T2 … TS 

(x, ?) h* = F(h1, h2, …, hS) 

(x, y*) 

Learning 
phase  

h1 h2 … hS 

different 
training sets 
and/or 
learning algorithms 
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How to make an effective 
ensemble? 

Two basic decisions when designing 
ensembles: 

1.   How to generate the base classifiers? 
 h1, h2, … 

2.   How to integrate/combine them? 
 F(h1(x), h2(x), …) 
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Question 2: How to integrate them 

• Usually take a weighted vote: 
  ensemble(x) = f( ∑i wi hi(x) ) 

– wi is the “weight” of hypothesis hi 
– wi > wj means “hi is more reliable than hj” 
– typically wi>0  (though could have wi<0 

meaning “hi is more often wrong than right”) 

•  (Fancier schemes are possible but 
uncommon) 
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Question 1: How to generate base 
classifiers 

•  Lots of approaches… 
•  A. Bagging 
•  B. Boosting 
• … 
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PART 2:  BAGGing = Bootstrap AGGregation 

(Breiman, 1996) 

•  for i = 1, 2, …, K: 
– Ti  randomly select M training instances 

  with replacement 
– hi  learn(Ti)     [ID3, NB, kNN, neural net, …] 

• Now combine the hi together with 
uniform voting (wi=1/K for all i) 
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decision tree learning algorithm; along the lines of ID3 
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shades of blue/red indicate strength of vote for particular classification 
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Part 3:  Boosting 
•  Bagging was one simple way to 

generate ensemble members with 
trivial (uniform) vote weighting 

•  Boosting is another…. 

•  “Boost” as in “give a hand up to” 
– suppose A can learn a 

hypothesis that is better than 
rolling a dice – but perhaps 
only a tiny bit better 

– Theorem:  Boosting A yields 
an ensemble with arbitrarily 
low error on the training data! 

size of ensemble 
time 

1 2 3 4 5 6 ….                 500 

50% 
49% 

ensemble error rate 

error rate of A by itself 
error rate of flipping a coin 
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Boosting 
Idea: 
•  assign a weight to every training set instance 
•  initially, all instances have the same weight 
•  as boosting proceedgs, adjusts weights based on 

how well we have predicted data points so far 
- data points correctly predicted low weight 
- data points mispredicted  high weight 

Results: as learning proceeds, the learner is forced to 
focus on portions of data space not previously well 
predicted 
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blue/red = class 
size of dot = weight 
hypothesis = 
horizontal or vertical line 

Time=0 
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The WL error is 30% 

The ensemble error is 30% (note T=1) 

Time=1 
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Time=3 



22 

Time=7 
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Time=21 

Notice the slope of the weak learner 
error: AdaBoost creates problems of 
increasing difficulty. 
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Time=51 

Look, the training error is zero. One 
could think that we cannot improve the 
test error any more. 
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But… the test error still decreases! 

Time=57 
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Time=110 
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AdaBoost (Freund and Schapire) 

[0,1] 

= 1/N  

normalize wt to get a 
probability distribution pt 
 ∑I pt

i = 1 

penalize mistakes on 
high-weight 
instances more 

if ht correctly classify xi 
   multiply weight by βt < 1 
otherwise 
   multiple weight by 1 

binary class y ∈ {0,1} 

weighted vote, 
with wt = log(1/β t) 
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Learning from weighted instances? 

•  One piece of the puzzle missing… 

•  So far, learning algorithms have just taken as input a set 
of equally important learning instances. 

[0,1] 

Reweighting 
• What if we also get a weight vector saying how important each instance is? 
• Turns out.. it’s very easy to modify most learning algorithms to deal with 
weighted instances: 

– ID3:  Easy to modify entropy, information-gain equations to take into 
consideration the weights associated to the examples, rather than to take into 
account only the count (which simply assumes all weights=1) 
– Naïve Bayes:  ditto 
– k-NN: multiple vote from an instance by its weight 
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Learning from weighted instances? 

Resampling 
As an alternative to modify learning algorithms to support weighted 
datasets, we can build a new dataset which is not weighted but it 
shows the same properties of the weighted one. 

wi
i=1

k−1

∑ < n ≤ wi
i=1

k

∑

1.  Let L’ be the empty set 
2.  Let (w1,..., wn) be the weights of examples 

in L sorted in some fixed order (we 
assume wi corresponds to example xi) 

3.  Draw n∈[0..1] according to U(0,1)    
4.  set L’←L’∪{xk} where k is such that  
5.  if enough examples have been drawn 

return L’ 
6.  else go to 3 
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Learning from weighted instances? 

•  How many examples are “enough”?  

 The higher the number, the better L’ approximate a dataset 
following the distribution induced by W. 

 As a rule of thumb: |L’|=|L| usually works reasonably well. 

•  Why don’t we always use resampling instead of reweighting? 

 Resampling can be always applied, unfortunately it requires 
more resources and produces less accurate results. One should 
use this technique only when it is too costly (or unfeasible) to use 
reweighting. 
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Part 4:  ECOC 
•  So far, we’ve been building the ensemble 

by tweaking the set of training instances 
•  ECOC involves tweaking the output (class) 

to be learned 
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Example: Handwritten number recognition 
7, 4, 3, 5, 2 

“obvious” approach:  learn function: Scribble  {0,1,2,…,9} 
  doesn’t work very well (too hard!) 

What if we “decompose” the learning task into six “subproblems”? 

1. learn an ensemble of classifiers, one specialized to each of the 6 “sub-problems” 
2. to classify a new scribble, invoke each ensemble  member.  then predict the class 
whose code-word is closest (Hamming distance) to the predicted code 
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ECOC: Coding 

Coding 



35 

ECOC: Learning 

Classifier 
for 
vl 

Learn 

Learn 
Classifier 

for 
hl 
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ECOC:Classification 
Classifier 

for 
vl 

Classifier 
for 
hl 

Classifier 
for 
dl 

Classifier 
for 
cc 

Classifier 
for 
ol 

Classifier 
for 
or 

1 1 0 0 1 1 

Find nearest code… 

… and classify 
accordingly 
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Error-correcting codes 
Suppose we want to send n-bit messages through a noisy channel. 
    To ensure robustness to noise, we can map each n-bit message 
into an m-bit code (m>n) – note |codes| >> |messages| 
    When receive a code, translate it to message corresponding 
to the “nearest” (Hamming distance) code 
    Key to robustness: assign the codes so that each n-bit “clean” 
message is surrounded by a “buffer zone” of similar m-bit codes to 
which no other n-bit message is mapped. 

blue    = message (n bits) 
yellow = code (m bits) 

white = intended message 
red = received code 
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A coding example 

Consider a situation in 
which three bits are 
used to code two 
messages. If we select 
codewords which differs 
in more than two places, 
we can detect and 
correct any “single digit” 
error. 
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Designing code-words for ECOC learning 
•  Coding: k labels  m bit codewords 
•  Good coding: 

–  1. row separation: 
want “assigned” codes 
to be well-separated by 
lots of “unassigned” 
codes 

–  2. column separation:  each bit i 
of the codes should be uncorrelated 
with all other bits j 

•  Selecting good codes is hard! 
 (See paper for details) 

class 1 2 3 4 5 6 7 8 

Monday 0 0 1 0 0 0 1 0 

Tuesday 0 0 1 1 1 0 0 1 

Wednesday 0 0 1 0 0 0 1 0 

Thursday 0 0 0 1 0 1 1 0 

Friday 0 1 1 1 1 0 0 0 

Saturday 1 1 1 1 0 0 0 1 

Sunday 1 1 1 1 0 0 1 1 
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Bad codes 

class 1 2 3 4 5 6 7 8 

Monday 0 0 1 0 0 0 1 0 

Tuesday 0 0 1 1 1 0 0 1 

Wednesday 0 0 1 0 0 0 1 0 

Thursday 0 0 0 1 0 1 1 0 

Friday 0 1 1 1 1 0 0 0 

Saturday 1 1 1 1 0 0 0 1 

Sunday 1 1 1 1 0 0 1 1 

correlated 
rows  bad 

correlated 
columns  bad 

The simplest approach is to select the codewords at random. It can 
be showed that if 2m>>k then we obtain a “good” code with high 
probability (also Dietterich [1995] mentions that such codes seems to 
work well in practice). 



41 

Results 

20% 

% decrease in error of ECOC over an ID3-like learning algorithm 
(oops!) 

% decrease in error of ECOC over a neural network learner 
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Part 5: Why do ensemble work? 

•  Bias/Variance decomposition 
•  A(nother) statistical motivation 
•  A motivation based on representational 

issues 
•  A motivation based on computational 

issues  

Several reasons justify the ensemble 
approach. 
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Bias/Variance decomposition 
Let             be the average error of an algorithm A on an example x (the 
average is taken repeating the algorithm on many learning sets). 

It can be showed that              can be decomposed as follows: 

E[ε(x)]

E[ε(x)]

E[ε(x)] = Bias(x) +Variance(x) + Noise(x)

Let us consider the 
following example: 

We want to fit a 
dataset using a linear 
concept. 
“Unfortunately” the 
true function is 
sinusoidal. 

Sinusoidal concept 

Linear hypothesis 
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Bias Variance Decomposition 
Bias Variance 

Noise 
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Why do ensembles work? (Bagging) 
There exists empirical and theoretical evidence that 
Bagging acts as variance reduction machine (i.e., it 
reduces the variance part of the error). 

The theoretical arguments depends on the behavior of the binomial 
distribution when the number of combined hypotheses grows. 
Consider the probability p that an hypothesis learnt on a bootstrap replicate 
of the original training set classifies incorrectly a given example. The 
probability that the majority vote of T hypotheses is wrong is: 

Pr T
2






+1 hp are wrong







+ Pr T

2






+ 2 hp are wrong







+ ...+ Pr T  hp are wrong{ }

Clearly, the random variable X which count the number of hypotheses that 
are wrong when T are extracted is binomially distributed with parameters 
(p,T), i.e. X~Bin(p,T) 
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Why do ensembles work? (Bagging) 

It is simple to verify that if p<0.5 then the probability 
X is larger than T/2 approaches zero as T grows. 
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Why do ensembles work? (AdaBoost) 

Empirical evidence suggests that 
AdaBoost reduces both the bias and the 
variance part of the error.  

In particular, it seems that bias is mostly 
reduced in early iterations, while  
variance in later ones. 



48 

Lesson learned? 

• Use Bagging with low bias and high 
variance classifiers (e.g., decision trees, 
1-nn, ...) 

• Always try AdaBoost (;-)). Most of the 
times, it produces excellent results. It has 
been showed to work very well with very 
simple learners (e.g., decision stumps 
inducer) as well as with more complex 
ones (e.g. C4.5). 
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Other explanations? 

1 

2 

3 

[T. G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Computer 
Science, 1857:1–15, 2000.]
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1. Statistical 
•  Given a finite amount of data, many hypothesis are 

typically equally good.  How can the learning algorithm 
select among them? 
Optimal Bayes 
classifier recipe: take 
a weighted majority 
vote of all hypotheses 
weighted by their 
posterior probability. 
That is, put most 
weight on hypotheses 
consistent with the 
data. 

Hence, ensemble learning may be viewed as an 
approximation of the Optimal Bayes rule (which is 
provably the best possible classifier). 
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2. Representational 
The desired target function may not be 
implementable with individual classifiers, but 
may be approximated by ensemble averaging 

Suppose you want to build a decision boundary 
with decision trees The decision boundaries of 
decision trees are hyperplanes parallel to the 
coordinate axes.   By averaging a large number 
of such “staircases”, the diagonal decision 
boundary can be approximated with arbitrarily 
good accuracy 
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Representational (another example) 
•  Consider a binary learning task over [0,1] x [0,1], 

and the hypothesis space H of “discs” 

x1 

x2 

h1 

h2 

h3 

h1, h2, h3 ∈ H 
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Representational (another example) 

•  Hensemble = vote together h1, h2, h3 

 Even if target concept ∉ H, a mixture of hypothesis ∈ H 
might be highly accurate 

x1 

x2 

hensemble ∉ H 
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Representational (yet another 
example) 

As we have seen, 
despite the fact that 
no linear concept 
can acquire a 
rectangular concept, 
AdaBoost was quite 
successful in finding 
such an hypothesis by 
combining several 
linear concepts. 
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3. Computational 
•  All learning algorithms do some sort of search 

through some space of hypotheses to find one 
that is “good enough” for the given training data 

•  Since interesting hypothesis spaces are huge/
infinite, heuristic search is essential (eg ID3 
does greedy search in space of possible 
decision trees) 

•  So the learner might get stuck in a local 
minimum 

•  One strategy for avoiding local minima: repeat 
the search many times with random restarts 
  bagging 
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Summary… 
•  Ensembles: basic motivation – creating a 

committee of experts is typically more 
effective than trying to derive a single super-
genius 

•  Key issues: 
–  Generation of base models 
–  Integration of base models 

•  Popular ensemble techniques 
–  manipulate training data: bagging and boosting 

(ensemble of “experts”, each specializing on different 
portions 
of the instance space) 

–  manipulate output values: error-correcting output 
coding (ensemble of “experts”, each predicting 1 bit 
of the {multibit} full class label) 

•  Why does ensemble learning work? 

versus 


