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The Semantic Web
Towards a more intelligent Web

• The Web contains a large volume of data
• Text, multimedia, maps, locations...

• but: are these data exploited in the best possible way?

• Towards a more intelligent Web
• Offer new and better services
• Search and retrieve information in a more efficient manner

• Turn data into knowledge
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The Semantic Web
The Web of today

• Data on the Web is being created by and for humans
• It is therefore dominated by unstructured or sami-structured documents (text,

images, videos, charts,...), linked to one another, and...
• ...comprehensible for humans, but not for machines

• What do these humans mean?
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The Semantic Web

Pull computers out of their dark age, make them understand semantics.

From Scientific American, 2001.
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The Semantic Web
An extension of the Web

"The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation."

Tim Berners-Lee
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The Semantic Web
The vision of the Semantic Web I

Formalization and Standardization

• A Web, whose content can be understood and explored by machines

• Completing the informal and unstructured content of the Web of today by
formal knowledge

• Define formal languages to describe, explore and reason over the content
of the web resources

• Different degrees of formalization will be able to co-exist
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The Semantic Web
The vision of the Semantic Web II

Integration

• Integration of heterogeneous data, information and resources

• Automatic combination of web services

• –> Bring information retrieval to a new level

Ontologies

• Knowledge is described by ontologies
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The Semantic Web
The role of ontologies

Unstructured data Structure Semantics
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Ontologies

In philosophy

• The study of what there is, of what exists

• A characterization of the fundamental nature of existence
Parmenides, 5th cent. BCE

Parmenides
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Ontologies

Ogden and Richards (1936) introduced the so called meaning triangle:

A symbol stands for a real world object and evokes a concept.
A concept refers to a real world object designated by a symbol.
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Ontologies

On top of it, Sowa (2000) built the knowledge representation triangle:

How a concept connects to a certain conceptual representation.
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Ontologies
Then, what is an ontology?

An ontology is

• a model of some aspect of the world

• an explicit description of a domain of interest

• a common vocabulary for a shared understanding

• a specification of the semantics of terms

• Ex: A student is a person who studies at some University

• about concepts and how they are related

• formalized using a suitable logic

=> Many definitions...
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Ontologies
Gruber’s definition (1993)

"A formal specification of a shared conceptualization
of a domain of interest."

• Formal specification: given in a formal language, thus executable

• Shared: regards a group of persons who agree on a given representation

• Conceptualization: it is about the concepts and how they relate to each
other

• Domain: somewhere on the scale "application-driven – universally true"
("concrete – abstract")
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Ontologies
A populated ontology

A populated ontology

• O = {C, is_a,R, I,g}
• C is a set whose elements are called concepts

• is_a is a partial order on C

• R is a set of other (binary) relations holding between the
concepts from the set C

• I is a set whose elements are called instances

• g : C→ 2I is an injection from the set of concepts to the set
of subsets of I
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Ontologies
Concept instances

The instances:

• define a concept extensionally

• can be text documents, images, objects identified by URIs,...

• can be represented as (real-valued) vectors defined by a set of input
variables of some kind (the same for all instances in I)
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Ontologies
Examples

• Web taxonomies
• Yahoo categories

• Online catalogues
• Amazon

• Domain specific terminologies
• FMA - medical ontology
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Ontologies
Types of ontologies

Different levels of abstraction and of detail, different application purposes.
• Application ontologies, Domain ontologies, Core ontologies, Top ontologies

–> Expressiveness –>
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Ontologies
Applications I

• Ontologies as a specification of a common vocabulary

• Knowledge sharing
• Knowledge re-use
• Collaborativity
• Assist the development of information systems

• Ontologies for mutual understanding

• Communication between humans
• Understanding between humans and software agents

• support of the core ideas of the SW, web resources search and use

• Communication between software agents
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Ontologies
Applications II

• Ontologies for data sharing

• Data heterogeneity
• Data Integration

• Ontologies for information retrieval

• A vocabulary for annotation of web resources
• Use hierarchy and class relations in order to interpret this vocabulary
• Access large collections of data (text, multimedia)

• Assist user query formulation
• Query expansion, reformulation
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Data Mining and Ontologies?
What can data mining do for ontologies?

On the Web-scale, data mining is applied for

• Web content mining

• Web structure mining

• Web usage mining

Data mining techniques are used to

• learn ontologies

• match ontologies

• provide semantic annotations
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Data Mining and Ontologies?
And the other way round?

What can ontologies do for data mining?
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Data Mining and Ontologies?
And the other way round?

What can ontologies do for data mining?

– Describe and exchange data for use of ML techniques
– Provide important heuristics in the form of background or domain knowledge to support ML
– Information retrieval supported by ontologies
– Help understand the results obtained from data mining
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Ontology Construction and Evolution
Abstract and represent

• Abstract:

• What knowledge?
• What perspective?
• What application scope?
• What degree of detail, granularity?

• Represent:
• What formalism?
• How to represent the abstraction in that formalism?
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Ontology Construction and Evolution
Questions to ask

• Where to start from?
• From nothing, from text corpora, from web resources, from existing

ontologies...

• Manually or automatically?
• Different degrees of user involvement
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Ontology Construction and Evolution
Questions to ask

• How to identify the concepts that we are going to use?

• How to find these concepts and where?

• Which among them to keep?

• How to define them?

• How to define their relations, properties?

• How to group them together, how to structure them?
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Ontology Construction and Evolution
Construct and validate

• Construct
• From human resources, from text or multimedia data, from databases

• Validate

• Verify the coherence of the resulting ontology
• Experts validation
• User validation
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Ontology Learning from Text
A definition (W. Wong, 2009)

The process of identifying terms, concepts, relations and optionally, axioms
from natural language text, and using them to construct and maintain an

ontology.
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Ontology Learning from Text
An interdisciplinary topic

An interdisciplinary topic

• text and data mining, machine learning: extract rules and patterns out of massive
datasets in a supervised or unsupervised manner based on extensive statistical analysis

• natural language processing: analyzing natural language text on various language
levels (e.g. morphology, syntax, semantics) to uncover concept representations and
relations through linguistic cues

• information retrieval: algorithms to analyze associations between concepts in texts
using vectors, matrices and probabilistic theorems

• knowledge representation, reasoning: enables elements to be formally specified and
represented such that new knowledge can be deduced
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Ontology Learning from Text
The outputs of ontology learning I

Five types of output:

• terms

• concepts

• taxonomic relations

• non-taxonomic relations

• axioms
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Ontology Learning from Text
The outputs of ontology learning II

Terms

• Lexical realization of all that is important in a domain

• Single words, multi-words
• Tasks:

• preprocess texts: input text format
• extract terms: part of speech tagging, sentence parsing
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Ontology Learning from Text
The outputs of ontology learning III

Concepts

• What is a concept? ...that’s a tough one!

• For our goals: a group of terms, a class of individuals
• Tasks:

• form concepts: grouping terms together
• label concepts: use background knowledge (WordNet?)
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Ontology Learning from Text
The outputs of ontology learning IV

Relations

• Structure the concepts

• Hierarchical (taxonomic) or non-hierarchical (non-taxonomic)
• Tasks:

• construct hierarchy: discovery of hypernyms
• use of background knowledge, statistical models,...

• extract non-taxonomic structures: more challenging
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Ontology Learning from Text
The outputs of ontology learning V

Axioms

• Facts that are always taken as true (propositions or sentences)
• Tasks:

• discover axioms
• generalization or deduction
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Ontology Learning from Text
Outputs, tasks and techniques (W. Wong 2009)
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Techniques for Ontology Learning

Depend on the task to be accomplished

• Statistics-based

• Linguistics-based

• Logic-based

• Hybrid
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Techniques for Ontology Learning
Statistics-based techniques

Fields: Information retrieval, data mining, machine learning

– No consideration of underlying semantics;

– Important at the early stage of ontology acquisition.

• clustering

• latent semantic analysis

• co-occurrence analysis

• term subsumption

• contrastive analysis

• association rule mining
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Techniques for Ontology Learning
Statistics-based techniques

Clustering
– concept formation, taxonomic relations

• Agglomerative
• Assign terms into groups
• Using a measure of relatedness

• Divisive
• Start with all terms and split them into subgroups

• Problem: similarity computation due to high dimension of data
• => Use of feature-less representation (Normalized Google Distance)
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Techniques for Ontology Learning
Statistics-based techniques

Latent Semantic Analysis
– concept formation

• Dimension reduction techniques

• Reveal inherent "hidden" relations between terms

• Resulting orthogonal dimensions:
{(car),(truck),(flower)}−−> {(1.3∗ car +0.28∗ truck),(flower)}

• Problem: complexity
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Techniques for Ontology Learning
Statistics-based techniques

Occurrence and co-occurrence
– term extraction, concept formation

• The presence of two or more terms within a sentence or an N-gram
• Coupled with association strength measures...

• Mutual Information: measure the discrepancy between the joint probability of two
terms and their individual probabilities

• Estimate on corpora: PMI(t,s) = log Ft,s×n
(Ft,s+Fs)(Ft,s+Ft )

• Rank Correlations: parameter-free correlation measures, act as similarity measures

• ...or similarity measures (e.g., cosine)
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Techniques for Ontology Learning
Statistics-based techniques

Conditional probabilities
– taxonomic relations

• ...of the occurrence of terms

• Employed to discover hierarchical relations between terms
• Using a term-subsumption measure

• P(x |y)> t and P(x |y)> P(y |x) for a given threshold t
• Example: P(′′fish′′|′′shark ′′)> P(′′shark ′′|′′fish′′)

• Estimate by using corpora:
• x subsumes y if the documents in which y occurs are a subset of the

documents in which x occurs
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Techniques for Ontology Learning
Statistics-based techniques

Relevance analysis
– term extraction

• TF-IDF: term frequency within a document scaled by the inverse document
frequency of the term in the corpus

• Evaluate the relevance of a term w.r.t. a document and a collection of
documents (the extent of its occurrence in a single document and in a corpus)

Association rule mining
– taxonomic relations, non-taxonomic relations

• associations: {chips,beer}
• induction: {chips,beer}, {peanuts,soda} -> {snacks,drinks}
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Techniques for Ontology Learning
Linguistics-based techniques

Field: Natural Language Processing

– Applicable at all levels of the ontology learning process

• part-of-speech tagging and sentence parsing

• syntactic structure analysis and dependency analysis

• semantic lexicon, lexico-syntactic patterns, semantic templates,
subcategorisation frames, seed words.
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Techniques for Ontology Learning
Linguistics-based techniques

Part-of-speech tagging and sentence parsing (syntactic analysis)
– term extraction

• Provide the basis for further linguistic analysis

• Brill Tagger, TreeTagger, GATE, NLTK,...

• Disclaimer: many parsers are actually built on statistical methods and
make use of training data in the form of (manually) parsed corpora
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Techniques for Ontology Learning
Linguistics-based techniques

Syntactic structure analysis and dependency analysis
– term extraction, taxonomic relations, non-taxonomic relations labeling

• Examine syntactic information to discover terms and relations at a
sentence level

• Example: ADJ-NN can be extracted as potential terms, verb-phrases can be
ignored

• In dependency analysis, grammatical relations are used (complement,
subject, etc...) to discover more complex relations

• Example: Jane took the book from the library.
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Techniques for Ontology Learning
Linguistics-based techniques

Use of a semantic lexicon
– concept formation, concept labeling, relations labeling

• General (WordNet) or domain specific (UMLS1)

• Access to a large collection of predefined words and relations

• A set of synonyms (sunsets in WordNet) model a concept

• Assigning semantic relations (hyponymy, meronymy)

• Word-sense disambiguation

1Unified Medical Language Systems
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Techniques for Ontology Learning
Linguistics-based techniques

Lexico-syntactic patterns
– taxonomic relations, non-taxonomic relations

• Extract hypernyms and meronyms

• Use of patterns:
NP such as NP, NP, ... and NP;
NP and NP are parts of NP

• Problem: producing such patterns (manually? too costly)
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Techniques for Ontology Learning
Linguistics-based techniques

Sub-categorization frames
– term extraction, concept formation, non-taxonomic relations (?)

• Definition: the number and kinds of other words that a word selects when
appearing in a sentence

• Joe wrote a letter. -> "write" selects "Joe" and "letter " as its subject and
object

• Part of the speaker’s knowledge of the world

Seed words
– term extraction

• Anchors: provide "good" starting points to discover other related terms

K. Todorov 54 / 91



Techniques for Ontology Learning
Logic-based techniques

Fields: Knowledge Representation, Reasoning, Machine Learning

– Least common in ontology learning;

– Used for discovering relations and axioms.

• Inductive Logic Programming

• Logical Inference
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Techniques for Ontology Learning
Logic-based techniques

Inductive Logic Programming
– taxonomic and non-taxonomic relations

• A collection of positive and negative examples:

• "cats have fur", "tigers have fur" -> "felines have fur"
positive examples

• "dogs have fur" -> "mammals have fur" ?
positive example

• "humans do not have fur" -> "canines and felines have fur"
negative example
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Techniques for Ontology Learning
Logic-based techniques

Logical Inference
– axiom discovery

• Derive implicit relations from existing ones
(using transitivity, inheritance, etc...)

• "Socrates is a man", "All men are mortal" –> "Socrates is mortal"

• Some transitivity problems:
"Human eats chicken", "Chicken eats warms" –> ?
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Evaluation
According to a perspective

The ontology is not the end result
Rather a means to achieve some further goals

How good an ontology have we constructed?
Not an easy question.

Good with respect to...

• a given application context

• the "fit" of the ontology to the domain knowledge (in the form of corpora)

• a benchmark

• an expert assessment
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Evaluation
According to a layer

Ontologies are complex artifacts, composed by multiple layers.

• Terminological layer: correctness of the terminology
• Are the terms used to identify a concept included and are they correct?

• Conceptual layer: coverage
• How well do the extracted terms cover the domain?

• Taxonomical layer: structure

• Non-taxonomical layer: adequacy of the relations

Adopt a gold-standard approach:
an expert ontology vs. a learned ontology.
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Evaluation
Performance measures at the terminological and conceptual layers I

On the terminological and conceptual layers

• Precision and recall

P =
relevant_found

all_found
, R =

relevant_found
all_relevant

.
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Evaluation
Performance measures at the terminological and conceptual layers II

• Lexical overlap

LO =
|Cd ∩Cm|
|Cm|

,

Cd - discovered concepts, Cm - recommended, |.| - set cardinality. A
measure of recall.

• Ontological Improvement / Ontological Loss

OI =
|Cd −Cm|
|Cm|

, OL =
|Cm−Cd |
|Cm|

.
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Evaluation
According to a layer

On the structural layers

• Taxonomical layer: Structure

• Non-taxonomical layer: Adequacy of the relations

These layers are more tough to evaluate!
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Evaluation
Performance measures at the taxonomical layer I

Types of measures

• Local: measure the similarity of the concept’s position in the learned
taxonomy and in the benchmark

• Global: average the local scores for all concept pairs
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Evaluation
Performance measures at the taxonomical layer II

A common measure: the taxonomic overlap (TO)
• Semantic cotopy: the set of all super- and sub-concepts of a given term

Locally: TO(bike,O1,O2) = {SCO1(bike)}∩{SCO2(bike)}= 1/9
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Evaluation
Performance measures at the taxonomical layer III

From there on, compute the global taxonomic overlap:

TOglobal(O1,O2) =
1
|C1| ∑

c∈C1,c /∈C2

TO(c,O1,O2),

where C1 and C2 are the sets of concepts of O1 and O2, respectively.

Note that TOglobal is not symetric.
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Evaluation
A posteriori approach

A posteriori approach

• Ask a domain expert to evaluate each concept of the learned ontology

• Group concepts in three categories:

• correct
• new
• spurious

• Precision = (correct + new) / (correct + new + spurious)
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Several Systems

• OntoLearn, TextToOnto, ASIUM, TextStorm/Clouds, SYNDIKATE,...

Some conclusions:

• Mostly semi-automatic

• Depend on static background knowledge, no flexibility to port on different
domains and languages

• A common evaluation platform is still to be provided

• Discovering relations (non-taxonomic) and axioms is still work in progress
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Ontology Learning
From multimedia data?...

And what if we have images instead of text documents?...
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Ontology Learning
From multimedia data?...

And what if we have images instead of text documents?...

– automatic concept detection in an image (machine learning, classification)
– construction of concept hierarchies from tags and classification methods
– towards a linguistic description of an image, a video
– use of textual information associated to the image?
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Ontology Matching
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Ontology Matching
Introduction to the problem

Ontologies are created in a decentralized, strongly human biased manner.
Many ontologies describing the same domain of interest

=> ontology heterogeneity:

• syntactic

• terminological

• conceptual / structural

=> Ontology Matching: detect the semantic correspondences between the elements
of two ontologies.
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Ontology Matching

Types of ontology matching approaches:

• terminological, structural, semantic, instance-based

Basic elements:

• a concept similarity measure and an algorithm which applies it, taking into
account the structure.
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Ontology Matching
Instance-based concept similarity

The similarity of two cross-ontology concepts is assessed by the help of the
instances of these concepts
-> Many possible measures.
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Ontology Matching
Ontology matching and machine learning

Intersection of class instance sets

-> Same instances need to be found in both ontologies.
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Ontology Matching
Ontology matching and machine learning

The cosine of the prototypes

sim(A,B) = s
( 1
|A|

|A|

∑
j=1

iAj ,
1
|B|

|B|

∑
k=1

iBk
)
,

with s(x ,y) the cosine similarity of x and y .

-> Flattening class structure
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Ontology Matching
Ontology matching and machine learning

The Jaccard coefficient

Jacc(A,B) = Pr(A∩B)/Pr(A∪B).

Machine learning is used to estimate the joint probabilities.

-> Insensitive to instance set intersection size
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Ontology Matching
Instance-based concept similarity

Variable selection based measure

-> Time complexity is high
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Ontology Matching
ML for combining similarity measures
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Semantic Annotation

Semantic metadata are often handcrafted.

Towards an automation of this process.

ML techniques: an automatic description of a document (text, image,...) or a
data entity.

• results in a set of tags (key words that correspond to the semantic content
of the document)
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Semantic Annotation

=> Ontologies are learned (semi-)automatically to annotate data

<= Already constructed ontologies are used to annotate large collections of
text documents, images, videos by the help of classification techniques

• Examples in multimedia: LSCOM, LabelMe
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Semantic Annotation

Allow to reason over the annotations and improve them in order to describe
better a document.

• infer new tags

• discover inconsistencies and remove incorrect tags

• use ontologies for spatial relations, context
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Summary
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Summary
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Summary

Data mining is very useful to build ontologies:

extracting terms
–> constructing concepts

–> organizing concepts in hierarchies
–> defining non-hierarchical relations

Further:
–> dealing with ontology matching

–> providing automatic semantic annotation
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Summary

Towards...

• An improved relation discovery (Wikipedia?)

• Ontology learning from social data

• Ontology learning across different languages
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