
BMatch: a Semantically Context-based Tool Enhanced by an

Indexing Structure to Accelerate Schema Matching∗

Fabien Duchateau
LIRMM
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Université Montpellier 2
34392 Montpellier - France

bella@lirmm.fr

Mathieu Roche
LIRMM
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Abstract

Schema matching is a crucial task to gather in-
formation of the same domain. This is more true
on the web, where a large number of data sources
are available and require to be matched. How-
ever, the schema matching process is still largely
performed manually or semi-automatically, dis-
couraging the deployment of large-scale media-
tion systems. Indeed, these large-scale scenarii
need a solution which ensures both an accept-
able matching quality and good performance. In
this article, we present an approach to match
efficiently a large number of schemas. The qual-
ity aspect is based on the combination of termi-
nological methods and cosine measure between
context vectors. The performance aspect re-

∗Supported by ANR Research Grant ANR-05-MMSA-
0007

lies on a B-tree indexing structure to reduce the
search space. Finally, our approach, BMatch,
has been implemented and the experiments with
real sets of schemas show that it is both scal-
able and provides an acceptable matching qual-
ity when compared with the results obtained by
the most referenced matching tools.

Keywords: semantic similarity, schema
matching, BMatch, B-tree index structure, node
context, terminological and structural measures

1 Introduction

Interoperability among applications in dis-
tributed environments, including today’s
World-Wide Web and the emerging Semantic
Web, depends critically on the ability to map
between them. Unfortunately, automated
data integration, and more precisely matching
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between schema, is still largely done by hand,
in a labor-intensive and error-prone process. As
a consequence, semantic integration issues have
become a key bottleneck in the deployment
of a wide variety of information management
applications. The high cost of this bottleneck
has motivated numerous research activities
on methods for describing, manipulating and
(semi-automatically) generating schema map-
pings.

The schema matching problem con-
sists in identifying one or more terms in
a schema that match terms in a target
schema. The current semi-automatic matchers
[10, 1, 12, 16, 7, 13, 19] calculate various
similarities between elements and they keep
the couples with a similarity above a certain
threshold. The main drawback of such matching
tools is the performance: although the matching
quality provided at the end of the process is
acceptable, the elapsed time to match implies
a static and limited number of schema. Yet in
many domain areas, a dynamic environment
involving large sets of schema is required.
Nowadays’ matching tools must combine both
an acceptable quality and good performance.

In this paper we present our matching tool,
BMatch. It supports both the semantic aspect
by ensuring an acceptable matching quality and
good performance by using an indexing struc-
ture. Contrary to similar works, our approach
does not use any dictionnary or ontology and is
both language and domain independent.

The semantic aspect is specifically designed
for schemas and consists in using both termino-
logical algorithms and structural rules. Indeed
the terminological approaches enable to discover
elements represented by close character strings.

On the other hand, the structural rules are used
to define the notion of context of a node. This
context includes some of its neighbours, each of
them is associated a weight representing the im-
portance it has when evaluating the contextual
node. Vectors composed of neighbour nodes are
compared with the cosine measure to detect any
similarity. Finally the different measures are ag-
gregated for all couples of nodes.

Like most of the matchers, this semantic as-
pect lacks to provide good performance in terms
of time. Indeed, comparing each node from one
schema to each node from the other schemas
is a time-consuming process. Thus, the second
aspect of our approach aimed at improving the
performance by using an indexing structure to
accelerate the schema matching process. The
B-tree structure has been chosen to reach this
goal, as it has been designed to search and find
efficiently an index among a large quantity of
data. Indeed, we assume that two similar labels
share at least a common token, so instead of
parsing the whole schema, we just search for
the tokens indexed in the B-tree. Furthermore,
we performed some experiments based on large
sets of schema and the results show that our
approach is scalable.

Our main contributions are:

• We designed the BMatch approach to dis-
cover mappings between two schemas. This
method is not language-dependent. It does
not rely on dictionaries or ontologies. It is
also quite flexible with different parameters.

• As for the semantic aspect, we described the
notion of context for a schema node. And a
formula enables to extract this context from
the schema for a given node. Our approach
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is based on both terminological measures
and structural measure using this context.

• An indexing structure for matching provides
good performance by clustering label to-
kens.

• An experiment section allows to judge on
the results provided by BMatch on both as-
pects. Some schemas widely used in the
schema matching literature enables to en-
sure an acceptable matching quality. And
large number of real XML schemas (OASIS,
XCBL) shows good performance applicable
for a large scale scenario. It also enables to
fix the values of some parameters.

The rest of the paper is structured as follows:
first we briefly define some general concepts in
Section 2; in Section 3, we explain the moti-
vations that led to our work. In Section 4, an
outline of our method is described; in Section
5, we present the results of our experiments; an
overview of related work is given in Section 6
and in Section 7, we conclude and outline some
future work.

2 Preliminaries

In this section, we define the main notions used
in this paper.

Definition 1 (Schema) : A schema is a
labeled unordered tree S = (VS, ES, rS, label)
where VS is a set of nodes; rS is the root
node; GS ⊆ VS × VS is a set of edges; and
label ES → Λ where Λ is a countable set of labels.

Definition 2 (Semantic Similarity Mea-
sure): Let E1 be a set of elements of schema
1, and E2 be a set of elements of schema 2. A

semantic similarity measure between two ele-
ments e1 ∈ E1 and e2 ∈ E2, noted as Sm(e1, e2),
is a metric value based on the likeness of their
meaning/ semantic content, given as:

Sm : E1xE2 → [0, 1]

(e1, e2) → Sm(e1, e2) where a zero value
means a total dissimilarity and 1 value stands
for total similarity.

Definition 3 (Automatic Schema Match-
ing): Given two schema elements sets E1 and
E2 and a similarity measure threshold t. We de-
fine Automatic Schema Matching, between two
elements e1 and e2, noted as match(e1, e2), as
follows in Algorithm 1:

Algorithm 1 Automatic Schema Matching
Require: schema E1, schema E2, threshold t
Ensure: Matches automatically discovered

for (e1, e2) ∈ E1xE2 do
if Sm(e1, e2) < t then

match(e1, e2) = false
else

match(e1, e2) = true
d = Sm(e1, e2)

end if
end for

We define d as the similarity degree (or
value) with d = Sm(e1, e2). Threshold t may
be adjusted by an expert, depending upon the
strategy, domain or algorithms used by the
schema matching tools.

Example 2.1: If match(adresse, address) is
calculated using Levenhstein distance algorithm,
the value of d is 0.857 and if 3-gram algorithm is
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used, then the result for d is 0.333. For another
example match(dept, department), Levenhstein
distance value of d is 0 and 3-gram result is
0.111. The examples show that the threshold
has to be adjusted by an expert depending upon
the properties of strings being compared and
the match algorithms being applied.

Definition 4 (Best Match selection):
There can be the possibility of more than one
match for an element e1 ∈ E1 in E2. In such
situation, the match with maximum similarity
degree has to be selected. This case can be
formally defined as:

Given Ei2 ⊆ E2 of size n, such that ∀ eij

corresponding to element ei, match(ei,eij) is
true; where 1 ≤ j ≤ n. Best match for element
ei of E1 noted as matchib is given as following:

matchib =
n

max
j=1

Sm(ei, eij)

Definition 5 (Schema Mapping): Given
E1 a set of elements of schema 1, E2 a set of
elements of schema 2 and I a set of mappings
identifiers. We define a mapping between two
elements e1 ∈ E1 and e2 ∈ E2 by the following
function noted as Map:

Map: IxE1xE2xFs → IxE1xE2x[0, 1]xK
(id, e1, e2, Sm) → (id, e1, e2, d, k)

where Fs is a set of functions performing sim-
ilarity measure, d is the similarity degree re-
turned by match(e1, e2) and K is the set of map-
ping expressions e.g. equivalence, synonym, in-
clusion etc., depending upon the data model be-
ing represented by schemas 1 and 2.

Schema mapping can be uni-directional i.e.,
from schema 1 toward schema 2, or bidirectional

i.e., the correspondence holds in both directions
e.g. if an element e1 from schema 1 is mapped
to an element e2 of schema 2 then there exists
another correspondence for element e2 of schema
2 toward element e1 of schema 1 [1].

3 Motivations

In this section, we explain the motivations be-
hind our work, especially why we choose to
combine both terminological and structural ap-
proaches.

• Terminological measures are not sufficient,
for example:

– mouse (computer device) and mouse
(animal) lead to polysemia problem

– university and faculty are totally dis-
similar labels

• Structural measures have some drawbacks:

– propagating the benefit of irrelevant
discovered matches to the neighbour
nodes increases the discovering of more
irrelevant matches

– not efficient with small schemas

Example of schema matching: Consider
the two following schemas used in [4]. They
represent organization in universities from
different countries and have been widely used in
the literature.

With those schemas, the ideal set of mappings
given by an expert is {(CS Dept Australia,
CS Dept U.S.), (courses, undergrad courses),
(courses, grad courses), (staff, people), (aca-
demic staff, faculty), (technical staff, staff),
(lecturer, assistant professor), (senior lecturer,
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Figure 1: Schema 1: organization of an Aus-
tralian university

associate professor), (professor, professor)}.

Let’s imagine we try to find out a similarity
between Courses and GradCourses. Using ter-
minological measures, namely 3-grams and Lev-
enhstein distance, we discover a high similarity
between these labels. StringMatching denotes
the average between 3-grams and Levenhstein
similarity values and it represents the similarity
obtained by terminological measures.All these
measures are defined later in Section 4.1.1.

• 3grams(Courses, GradCourses) = 0.2

• Lev(Courses, GradCourses) = 0.42

⇒ StringMatching(Courses, Grad-
Courses) = 0.31

Now if we consider the nodes Academic Staff
and Faculty. The terminological measures do not
reveal useful to discover a match between these
labels (StringMatching value of 0.002). However,
the structural measures enables to match the la-
bels with a similarity value equals to 0.37. They

Figure 2: Schema 2: organization of a US uni-
versity

are based on the notion of context, which rep-
resents, for a given node, its semantically most
important neighbours. And the contexts of two
nodes are compared using the cosine measure.
A detailed explanation of the context and the
cosine measure is given in Section 5.1.

• StringMatching(Academic Staff, Faculty) =
0.002

• Context(Academic Staff) = Academic Staff,
Lecturer, Senior Lecturer, Professor

• Context(Faculty) = Faculty, Assistant Pro-
fessor, Associate Professor, Professor

⇒ CosineMeasure(Context(Academic
Staff), Context(Faculty)) = 0.37

Thus, in our approach we combine both ter-
minological and structural measures so that we
avoid the previously described problems and we
ensure an acceptable matching quality.
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4 Our approach: BMatch

In this section, at first, we introduce the basis
of our approach: the semantic aspect which fo-
cuses on the discovery of the matches and the
performance aspect, based on a B-tree indexing
structure. The first aspect uses a combination
of terminological and structural measures, while
the second one follows the assumption that most
similar labels share a common token.

4.1 Semantic Aspect

One of the contributions in our approach con-
sists in taking into account the context of the
nodes. By context of a node n, we mean the key-
words, the description in natural language and
the neighbouring nodes of n. As the keywords
and/or description of the elements are not always
available, we mainly concentrate our work on the
neighbouring nodes. Indeed those lasts corre-
spond to specific information thus such knowl-
edge is crucial to understand the meaning of the
elements. However our method works with key-
words and description as well.

To compare the context from one element, we
first build a vector composed of its most impor-
tant neighbour elements, each of them being as-
sociated with a weight. This vector is then called
context vector. The aim is finally to compare
two context vectors of elements from different
schemas in order to evaluate their semantic sim-
ilarity. This similarity may be determined by
using the cosine measure which enables to com-
pare two vectors [17]. The cosine measure is
higher (close to 1) if the terms in the two vectors
tend to have a close meaning. A such measure
is already used in Information Retrieval and is
explained later on. In the rest of this paper, we
call CosineMeasure CM, the cosine measure

between two relative context vectors.
As explained before, two context vectors tend

to be close if the terms they gather tend to be
close. Yet, in the real world, those terms may
be different while having character string quite
close. So the idea to solve this problem is to use
some terminological algorithms to replace char-
acter strings that have high lexical measures.

Here we firstly describe some important no-
tions of our approach, the terminological mea-
sures and the context. Then BMatch’s semantic
aspect is explained in details. Finally, more pre-
cision is given about the parameters.

4.1.1 Terminological Measures

This part focuses on two terminological mea-
sures used in BMatch’ semantic part.

n-grams

An n-gram is a sub-sequence of n items from
a given sequence. n-grams are used in various
areas of statistical natural language process-
ing to calculate the number of n consecutive
characters in different strings. In general, the
n value vary between 1 and 5 and is often set
to 3 [9, 8]. For example, consider the two
character strings dept and department. Using
tri-grams, we build the two sets {dep, ept} and
{dep, epa, par, art, rtm, tme, men, ent}.

To measure the similarity of two elements, the
following formula 1 issued from [9] gives a value
in ]0,1]:

Tri(c1, c2) =
1

1 + |tr(c1)|+ |tr(c2)| − 2× |tr(c1) ∩ tr(c2)|
(1)
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The number of common occurrences in these
sets is 1. By applying the formula 1 on those
sets, we obtain a similarity between dept and
department:

Tri(dept, department) =
1

1 + 2 + 8− (2× 1)
=

1
9

(2)

Levenhstein distance

The Levenhstein distance between two strings
is given by the minimum number of operations
needed to transform one source string into the
target other, where an operation is an insertion,
deletion, or substitution of a single character.
The Levenhstein distance is the measure where
all operation costs are set to 1. The Levenhstein
similarity, noted LevSim, is a formula using the
Levenhstein distance, noted L, and which pro-
cesses a similarity measure between two strings:

LevSim(c1, c2) = max{0,
min{|c1|, |c2|} − L(c1, c2)

min{|c1|, |c2|} } (3)

where ch1 and ch2 are two strings. The value
given by the Levenhstein similarity formula is in
[0,1], with the zero value denoting a dissimilarity
and 1 a total similarity. Note that in the rest of
the paper, we use either the term Levenhstein
similarity or Levenhstein distance.

Following is a simple example for illustrating
the formula 3 to obtain the Levenhstein similar-
ity between dept and department:

LevSim(dept, department) = max{0,
min{4, 10} − 6

min{4, 10}
} = 0 (4)

Next we describe the notion of context, used by
the structural part.

4.1.2 Node Context

A specific feature of our approach is to consider
the neighbour nodes. We called this notion the
context, which represents, given a current node
nc, the nodes denoted ni in its neighbourhood.
In fact, all nodes in the schema may be consid-
ered in the neighbourhood of nc. However, it is
quite obvious that the closest nodes ni are se-
mantically closer to the node nc. From this as-
sumption, we calculate the weight of each node
ni according to the node nc, which evaluates how
important the context node ni is for the node ni.
First we calculate ∆ d which represents the dif-
ference between the level of nc and the level of
ni:

∆d = |lev(nc)− lev(ni)| (5)

where lev(n) is the depth of the node n from the
root. Then we can calculate the weight noted
ω(nc, ni) between the nodes nc and ni:

ω(nc, ni) =

 ω1(nc, ni), ifAnc(nc, ni) or Desc(nc, ni)

ω2(nc, ni), otherwise
(6)

where Anc(n, m) (resp. Desc(n, m)) is a
boolean function indicating if node n is an an-
cestor (resp. descendant) of node m. This
weight formula is divided into two cases, ac-
cording to the relationship between the two con-
cerned nodes. If n is an ancestor or a descendant
of m, the formula 7 is applied. Else we apply for-
mula 8. The idea behind this weight formula is
based on the fact that the closer in the tree two
nodes are, the most similar their meaning is.

ω1(nc, ni) = 1 +
K

∆d + |lev(nc)− lev(na)| + |lev(ni)− lev(na)|
(7)
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ω2(nc, ni) = 1 +
K

2× (|lev(nc)− lev(na)| + |lev(ni)− lev(na)|)
(8)

where na represents the lowest common ancestor
to nc and ni, and k is a parameter to allow
some flexibility with the context. It is described
with more details in section 4.1.4. The value
of this weight is in the interval ]1,2] for k =
1. Note that this formula, for a given node n,
gives the same weight to all descendants and an-
cestors of this node n which are at the same level.

Example: Let consider the node Academic
Staff from schema 1. We look for the impor-
tance of Staff for the node Academic Staff. As
Staff is an ancestor of Academic Staff, we ap-
ply formula 7. ∆d, the difference between their
levels in the tree hierarchy, is equal to 1. Their
lowest common ancestor is Staff, and the differ-
ence of level between this common ancestor with
itself is 0, while it is equal to 1 with the node
Academic Staff, thus giving us the following re-
sult:

ω(AcademicStaff, Staff) = 1 +
1

1 + 1 + 0
= 1.5 (9)

Now we look for the weight of the node
Courses with regards to Academic Staff. They
have no ancestor or descendant relationship, so
the formula 8 is applied. Their lowest common
ancestor is the root node, namely CS Dept Aus-
tralia. Academic Staff is 2 levels far from the
common ancestor, and Courses is 1 level far from
it. The weight of Courses for the node Academic
Staff gives:

ω(AcademicStaff, Courses) = 1 +
1

2× (2 + 1)
= 1.17 (10)

We can then generalize to obtain the fol-
lowing set of couples (neighbour, associated
weight) which represents the context of the node
Academic Staff. {(CS Dept Australia, 1.25),
(Courses, 1.17), (Staff, 1.5), (Technical Staff,
1.25), (Lecturer, 1.5), (Senior Lecturer, 1.5),
(Professor, 1.5) } Note that some parameters
(described in the experiments section) have in-
fluence on the context.

4.1.3 Semantic Match Algorithm

BMatch’s semantic aspect is based on two steps:
first we replace terms in the context vectors
when they have close character strings. This
step uses the Levenhstein distance and 3-grams
algorithms (see Section 4.1.1). In a second time,
we calculate the cosine measure between two
vectors to determine if their context is close or
not.

Part one: terminological measures to
replace terms

The following describes in details the first
part of the semantic aspect. The two schemas
are traversed in preorder traversal and all nodes
are compared two by two with the Levenhstein
distance and the 3-grams. Both measures
are processed and according to the adopted
strategy1, the higher one or the average is kept.
The obtained value is denoted SM for String
Measure. If SM is above a certain threshold,
which is defined by an expert, then some
replacements may occur. The threshold will be
discussed in section 5. We decided to replace the
term with the greater number of characters by

1The maximum and average strategies reveals to be a
good compromise in the literature
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the term with the smaller number of characters.
Indeed we consider that the smaller-sized term
is more general than the bigger-sized one. This
assumption can be checked easily since some
terms may be written singular or plural. We
finally obtain after this first step the initial
schemas that have possibly been modified with
character string replacements.

We have also noticed the polysemia problem,
where a word may have different meanings. The
typical example is mouse, which can represent
both an animal and a computer device. In those
cases, the string replacement obviously occurs
but has no effect since the terms are similar.
However, the second part of our algorithm, by
using context, enables to avoid this polysemia
problem.

Part two: cosine measure applied to
context vectors

In the second part of our algorithm, we tra-
verse again the schemas - in which some string
replacements may have occurred by means of
step 1. And the context vector of a current
element is extracted in each schema. The
neighbour elements composing this vector may
be ancestors, descendants, siblings or further
nodes of the current element, but each of them
has a weight, illustrating the importance of this
neighbour with regards to the current node.
The two context vectors are compared using the
cosine measure, in which we include the weight
of the node. Indeed when counting the number
of occurrences of a term, we multiply this
number by its weight. This processing enables
to calculate CM, the cosine measure between
two context vectors, and thus the similarity
between the two nodes related to these contexts

too.

The cosine measure [17] is widely used in In-
formation Retrieval. The cosine measure be-
tween the two context vectors, noted CM, is
given by the following formula:

CM(v1, v2) =
v1 · v2√

(v1 · v1)(v2 · v2)
(11)

CM is in the interval [0,1]. A result close to
1 indicates that the vectors tend in the same
direction, and a value close to 0 denotes a total
dissimilarity between the two vectors.

Example: During step 2, the following re-
placement occurred: Faculty ↔ Academic Staff.
Now consider the two current nodes Staff
and People respectively from schemas 1 and 2.
Their respective and limited2 context vectors,
composed of couples of a neighbour node and
its associated weight, are {(CS Dept Australia,
1.5), (Faculty, 1.5), (Technical Staff, 1.5) } and
{(CS Dept U.S., 1.5), (Faculty, 1.5), (Staff,
1.5) }. As the only common term between the
two vectors is Faculty with a weight of 1.5, the
cosine measure between those context vectors is
0.44.

Finally, we obtain two similarity measures,
SM and CM, the first one based on termino-
logical algorithms while the second takes into
account the context. Here again, a strategy
must be adopted to decide how to aggregate
those similarity measures. In our approach, the
maximum and the average have been chosen

2To clarify the example, the context has been volun-
tary limited thanks to the parameters
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because they generally give better results in
the experiments than other formulas where
one of the measure is privileged. In the end
of the process, BMatch considers the set of
mappings all element couples whose similar-
ity value is above a threshold given by an expert.

4.1.4 Parameters of the Semantic Aspect

Like most of the matchers, our approach include
many parameters. Although this may be seen
as a drawback, since a domain expert is often
required to tune them, this is compensated by
the fact that our application is generic and works
with no dictionnary and whatever the domain or
language is.

• nb levels: this parameter is used to know
the number of levels, both up and down in
the hierarchy, to search in to find the con-
text nodes.

• min weight: combined with nb levels, it
represents the minimum weight to be ac-
cepted as a context node. This is quite use-
ful to avoid to have many cousin nodes -
that does not have a significant importance
- included in the context.

• replace threshold: this threshold is the
minimum value to be reached to do any re-
placement between two terms.

• sim threshold: this threshold is the min-
imal value to be reached to accept a simi-
larity between two schema nodes based on
terminological measures.

• k: this coefficient used in the weight formula
6 allows more flexibility. Indeed it repre-
sents the importance we give to the context
when measuring similarities.

Given that the number of parameters is
important, a such application need to be tuned
correctly to give acceptable results [15]. In
[5], several experiments show the flexibility
of BMatch by testing different configurations.
This enabled to fix some of the parameters to
default values.

This section described the semantic aspect of
BMatch, based on the combination of termino-
logical and structural measures. However, this
semantic aspect suffers from the same drawback
than the other matchers: low performance. This
is due to the important number of possibilities,
i.e each element from one schema is tested
with each element of another schema. The
next section presents an indexing structure to
accelerate the matching process by reducing the
search space.

4.2 Performance Aspect

The first part of this section introduces the
B-tree, an indexing structure already used in
databases for accelerating query response time.
Then we explain how we integrate it with the
semantic part to improve the performance.

4.2.1 An Indexing Structure: the B-tree

In our approach, we use the B-tree as the
main structure to locate matches and create
mappings between XML tree structures. The
advantage of searching for mappings using the
B-tree approach is that B-tree have indexes that
significantly accelerate this process. Indeed, if
you consider the schemas 1 and 2, they have
respectively 8 and 9 elements, implying 72
matching possibilities with an algorithm that
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tries all combinations. And those schemas are
small examples, but in some domains, schemas
may contain up to 6 000 elements. By indexing
in a B-tree, we are able to reduce this number
of matching possibilities, thus involving better
performances.

As described in [3], B-trees have many
features. A B-tree is composed of nodes, each
of them having a list of indexes. A B-tree of
order M means that each node can have up to
M children nodes and contains a maximum of
M-1 indexes. Another feature is that the B-tree
is balanced, meaning all the leaves are at the
same level - thus enabling fast insertion and fast
retrieval since a search algorithm in a B-tree of
n nodes visits only 1+logMn nodes to retrieve
an index. This balancing involves some extra
processing when adding new indexes into the
B-tree, however its impact is limited when the
B-tree order is high.

The B-tree is a structure widely used in
databases due to its efficient capabilities of re-
trieving information. As schema matchers need
to access and retrieve quickly a lot of data when
matching, an indexing structure such as B-tree
could improve the performances. The B-tree
has been preferred to the B+tree (which is com-
monly used in databases systems) since we do
not need the costly delete operation. Thus with
this condition, the B-tree seems more efficient
than the B+tree because it stores less indexes
and it is able to find an index quicker.

4.2.2 Principle of the Match Algorithm

By using both the semantic aspect and the
B-tree structure, the objective is to combine
their main advantage: an acceptable matching

quality and good performance. Contrary to
most of the other matching tools, BMatch does
not use a matrix to compute the similarity of
each couple of elements. Instead, a B-tree,
whose indexes represent tokens, is built and
enriched as we parse new schemas, and the
discovered mappings are also stored in this
structure. The tokens reference all labels which
contains it. For example, after parsing schemas
1 and 2, the courses token would hold three
labels: courses from schema 1, grad courses
and undergrad courses from schema 2. Note
that the labels grad courses and undergrad
courses are also stored respectively under the
grad and the undergrad tokens.

For each input XML schema, the same algo-
rithm is applied: the schema is parsed element
by element by preorder traversal. This enables
to compute the context vector of each element.
The label is split into tokens. We then fetch
each of those tokens in the B-tree, resulting in
two possibilities:

• no token is found, so we just add it in the
B-tree with a reference to the label.

• or the token already exists in the B-tree, in
which case we try to find semantic similari-
ties between the current label and the ones
referenced by the existing token. We as-
sume that in most cases, similar labels have
a common token (and if not, they may be
discovered with the context similarity).

Let us illustrate this case. When courses is
parsed in schema 1, the label is first tokenized,
resulting in the following set of tokens: courses.
We search the B-tree for this single token, but it
does not exist. Thus we create a token structure
whose index is courses and which stores the
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current label courses and it is added into the
B-tree. Later on, we parse grad courses in
schema 2. After tokenization process, we obtain
this set of tokens: grad, courses. We then
search the B-tree for the first token of the set,
but grad does not exist. A token structure
with this grad token as index is inserted in the
B-tree, and it stores the grad courses label.
Then the second token, courses, is searched
in the B-tree. As it already exists, we browse
all the labels it contains (here only courses
label is found) to calculate the String Measure
denoted SM between them and grad courses.
BMatch can replace one of the label by the
other if they are considered similar (depending
on the parameters). Whatever happens, grad
courses is added in the courses structure. The
next parsed element is undergrad courses,
which is composed of two tokens, undergrad
and courses. The first one results in an
unsuccessful search, implying an undergrad
token structure to be created. The second token
is already in the B-tree, and it contains the
two labels previously added: courses and grad
courses. The String Measures are computed
between undergrad courses and the two
labels, involving replacements if SM reaches
a certain threshold. undergrad courses is
added in the label list of the courses token
structure. So the index enables to quickly find
the common tokens between occurrences, and
to limit the String Measure computation with
only a few labels.

At this step, some string replacements might
have occurred. Then the parser performs
recursively the same action for the descendants
nodes, thus enabling to add the children nodes
to the context. Once all descendants have been
processed, similarities might be discovered by

comparing the label with tokens’ references using
the cosine and the terminological measures. A
parameter can be set to extend the search to the
whole B-tree if no mappings has been discovered.

Let us carry on our example. After process-
ing undergrad courses, we should go on with
its children elements. As it is a leaf, we then
search the B-tree again for all the tokens which
compose the label undergrad courses. Un-
der the undergrad token, we find only one
label, itself, so nothing happens. Under the
courses token, only one of the three existing
labels namely courses, is interesting (one is it-
self and the other, grad courses, is in the same
schema). The String Measure is thus applied be-
tween courses and undergrad courses. The
Cosine Measure is also performed between their
respective context, and the aggregation of these
two measures results in the semantic measure
between those labels. If this semantic measure
reaches the given threshold, then a mapping may
be discovered.

5 Experiments

As our matching tool focuses on both quality
and performance aspects, this section is orga-
nized in two parts. The first one shows that
BMatch provides an acceptable quality of match-
ing. The second part deals with the perfor-
mance, and large and numerous schemas are
matched to evaluate the benefit of the B-tree.
BMatch parameters have been tuned with the
following configuration, which provided optimal
results in [5]: replace threshold is equal
to 0.2, min weight and nb levels are respec-
tively set to 1.5 and 2 to limit the context, k to
1 sim threshold equals to 0.15. This last pa-
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rameter is empiric (determined by experiments)
and it indicates that all the matches discovered
by BMatch with a similarity below 0.15 have
been discarded. For these experiments we used
a 2 Ghz Pentium 4 laptop running Windows XP,
with 2 Gb RAM. Java Virtual Machine 1.5 is the
current version required to launch BMatch.

5.1 Semantic Aspect

In this part, BMatch is compared on schemas
1 and 2 with another matching tool reputed
to provide an acceptable matching quality:
COMA++. This matcher uses 17 similarity
measures to build a matrix between every cou-
ple of elements to finally aggregate the similar-
ity values and extract mappings. It is described
later in Section 6. BMatch obtained mappings
are shown in tables 1 and 2. The first table is for
the maximum (MAX) strategy, in which the sim-
ilarity is the maximum between StringMatching
and CosineMeasure. On the contrary, the sec-
ond table gathers the results obtained with the
average (AVG) strategy. For COMA++, all its
strategies have been tried and the best obtained
results are shown in the following table 3. Note
that in all tables, a + in the relevance column
indicates that the mapping is relevant.

In table 1, we notice that the second mapping
between CS Dept Australia and People is
irrelevant. However, the relevant mappings are
also discovered with a lower similarity value:
CS Dept Australia with CS Dept U.S. on line
4 and Staff with People on line 7. BMatch is
currently not able to determine if one of the
mappings should be removed or not. Indeed,
some complex mappings can be discovered, for
example Courses with both Grad Courses and
Undergrad Courses on line 3 and 5. Applying
a strategy to detect complex mappings and re-

Element from Element from Similarity Relevance
schema 1 schema 2 value
Professor Professor 1.0 +

CS Dept Australia People 0.46
Courses Grad Courses 0.41 +

CS Dept Australia CS Dept U.S. 0.36 +
Courses Undergrad Courses 0.28 +

Academic Staff Faculty 0.25 +
Staff People 0.23 +

Technical Staff Staff 0.21 +
Senior Lecturer Associate Professor 0.16 +

Table 1: Mappings with BMatch with MAX
strategy between schemas 1 and 2 (similarity
threshold set to 0.15)

Element from Element from Similarity Relevance
schema 1 schema 2 value
Professor Professor 0.58 +
Courses Grad Courses 0.32 +

CS Dept Australia CS Dept U.S. 0.26 +
CS Dept Australia People 0.25

Courses Undergrad Courses 0.17 +
Staff People 0.16 +

Academic Staff Faculty 0.15 +
Technical Staff Staff 0.15 +

Table 2: Mappings with BMatch with AVG
strategy between schemas 1 and 2 (similarity
threshold set to 0.15)

Element from Element from Similarity Relevance
schema 1 schema 2 value
Professor Professor 0.53545463 +

Technical Staff Staff 0.5300107 +
CS Dept Australia CS Dept U.S. 0.52305263 +

Courses Grad Courses 0.5041725 +
Courses Undergrad Courses 0.5041725 +

Table 3: Mappings with COMA++ between
schemas 1 and 2

13



Precision Recall F-measure
COMA++ 1 0.56 0.72
BMatch (MAX) 0.89 0.89 0.89
BMatch (AVG) 0.87 0.78 0.82

Table 4: Quality measures of COMA++ and
BMatch

move irrelevant ones is part of ongoing research.
With the average strategy shown in table 2, less
relevant mappings are discovered. However, the
irrelevant mapping between CS Dept Australia
and People has a lower similarity, and is now
ranked after the relevant mapping between CS
Dept Australia and CS Dept U.S..

Finally, table 4 shows the matching quality of
both matchers thanks to commonly used mea-
sures in the literature, namely precision, recall
and f-measure. Precision calculates the propor-
tion of relevant mappings extracted among ex-
tracted mappings. Another typical measure is
recall which computes the proportion of relevant
mappings extracted among relevant mappings.
F-score is a tradeoff between precision and re-
call. COMA++ found 5 mappings on the 9 rel-
evant similarities, implying that 4 mappings are
never discovered. The recall is 0.56, the precision
is obviously 1 since the extracted list gives only
the relevant similarities. We obtain a F-measure
equal to 0.72. As it discovers most of the rele-
vant mappings, BMatch obtains a higher F-score
than COMA++, whatever strategy is adopted.
However, it seems that the maximum strategy
is able to discover more mappings. Other ex-
periments have shown that in most configura-
tions3, BMatch’s F-measure is equal or above
0.73. These configurations enable to discover be-

3Configuration means the tuning of the parameters

tween 7 and 9 relevant similarities, compared to
the 5 given by COMA++. Besides, BMatch is
able to have a recall equal to 1 in some con-
figurations, which means that all relevant map-
pings are discovered. This is not the case with
COMA++ which has forgotten almost half of
the mappings.

5.2 Performance Aspect

A matching tool that ensures good performance
could be used in large scale scenario, or on
the Internet where numerous quantities of data
sources are available. Since there is no matching
tool available which is dedicated to large scale
scenarii, we compare our BMatch application
with a BMatch version without any indexing
structure. In this case, the matching algorithm
tries to match every couples of nodes for each
schema, by traversing the trees in preorder. By
focusing on performance, we mainly mean the
time spent to match a large number of schemas.
The context of a node is limited to its direct
parent and its children nodes. Although this
constraint could be removed, it has been shown
in the quality experiments (see Section 5.1) that
the context should not include too many further
nodes which could have a bad impact on the
quality.

The table 5 shows the different features of
the sets of schemas we used in our experi-
ments. Two large scale scenarii are presented:
the first one involves a thousand of average-sized
schemas about business-to-business e-commerce,
taken from the XCBL4 standards. In the second
case, we deal with OASIS5 schemas which are
also business domain related. We use only sev-

4www.xcbl.org
5www.oagi.org
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XCBL set OASIS set
Average number of 21 2 065
nodes per schema
Largest / smallest 426 / 3 6 134 / 26
schema size
Maximum depth 7 21

Table 5: Characterization of the schema sets

eral hundreds of those schemas because they are
quite large, with an average of 2000 nodes per
schema.

5.2.1 XCBL Scenario

Here we compare the performances of BMatch
and BMatch without the indexing structure
(thus limited to the semantic part) on a large
set of average schemas. The results are illus-
trated by the graph depicted in Figure 3. We
can see that the version without indexing struc-
ture is efficient when the number of schemas is
not very large (less than 1600). BMatch method
provides good performance with a larger num-
ber of schemas, since two thousand schemas are
matched in 200 seconds.

5.2.2 OASIS Scenario

In this scenario, we are interested by matching
large schemas, with an average of 2000 nodes.
The graph depicted in Figure 4 shows that the
version without indexing structure is not suited
for large schemas. On the contrary, BMatch
is able to match an important number of large
schemas in less than one minute. The graph also
shows that BMatch is quite linear. Indeed, it has
been tested for 900 schemas, and BMatch needs
around 130 seconds to perform the matching.

Figure 3: Matching time with XCBL schemas
depending on the number of nodes.

5.3 Comparison With other Matchers

Now we compare the performance of three
matching tools: BMatch, COMA++ and Sim-
ilarity Flooding.

Person University Order Biology
NB nodes (S1/S2) 11/10 18/18 20/844 719/80
Avg NB of nodes 11 18 432 400
Max depth (S1/S2) 4/4 5/3 3/3 7/3
NB of Mappings 5 15 10 57

Table 6: Features of the different scenarii.

Four real-world scenarii composed of two
schemas each are used: the first one describes
a person, the second is related to university
courses, the third one on a business order and
the last one comes from the biology domain.
Their main features are given by table 6.

Table 7 depicts the matching performance of
each matching tool for each scenario. All match-
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Figure 4: Matching time with OASIS schemas
depending on the number of schemas.

Person University Order Biology
NB S1 S2 S1 S2 S1 S2 S1 S2

Nodes 11 10 18 18 20 844 719 80
COMA++ ≤ 1 s ≤ 1 s 3 s 4 s
SF ≤ 1 s ≤ 1 s 2 s 4 s
BMatch ≤ 1 s ≤ 1 s ≤ 1 s 2 s

Table 7: Matching performance of COMA++,
Similarity Flooding and BMatch on the different
scenarii.

ers are able to match the small schemas in less
than one second. However, with larger schemas,
COMA++ and Similarity Flooding are less effi-
cient. On the other hand, BMatch still ensures
good performance.

5.4 Discussion

In this section, we have conducted some ex-
periments to demonstrate both the quality and
the performance of BMatch. Our matching tool
has been compared with COMA++, and we

have shown that BMatch provides an accept-
able matching quality : both matching tools
obtain a F-score slightly above 0.7. However,
COMA++ discovers only half of the relevant
mappings (thus involving a 0.56 recall) while
BMatch has a 0.89 recall. BMatch also per-
formed well in the performance aspect: the B-
tree indexing structure enables to match 430
schemas in 50 seconds, contrary to the BMatch
version without indexing structure which needs
160 seconds. Thus BMatch seems to be suitable
for a large scale scenario.

6 Related Work

This section covers related work in both the
schema matching and the similarity measures
domains.

6.1 Schema matching tools

In the literature, many schema matching ap-
proaches [10, 1, 12, 16, 7, 13, 19] have been
studied at length. Most of them have been
designed to demonstrate their benefit in dif-
ferent scenarii. However, the currently match-
ing tools employ techniques for mapping two
schemas with human intervention.

6.1.1 COMA++

As described in [1], COMA++ is a hybrid
matching tool that can incorporate many inde-
pendent matching algorithms. Different strate-
gies, for example the reuse-oriented matching
or the fragment-based matching, can be in-
cluded, offering different results. When load-
ing a schema, COMA++ transforms it into a
rooted directed acyclic graph. Specifically, the
two schemas are loaded from the repository and
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the user selects from the matcher library, the re-
quired match algorithms. For each algorithm,
each element from the source schema is at-
tributed a threshold value between 0 (no simi-
larity) and 1 (total similarity) with each element
of the target schema, resulting in a cube of sim-
ilarity values. The final step involves combining
the similarity values given by each matcher al-
gorithm by means of aggregation operators like
max, min, average, etc. Finally, COMA++
displays all mapping possibilities and the user
checks and validates their accuracy.

The advantage of COMA++ is the good
matching quality and the ability to re-use map-
pings, while supporting many formats and on-
tologies. During the match process or at the
end of the process, the user has the final deci-
sion to choose the appropriate mappings since
COMA++ has done most of the work in select-
ing the potential matches. New matching algo-
rithms can be added and the list of synonyms
can be completed, thus offering advantages for
specific field areas. It is also a good platform to
evaluate and compare new matching algorithms.

However the weak point of COMA++ is the
time required, both for adding the files into the
repository and to match schemas. In a large
scale context, spending several minutes with
those operations can entail performance degra-
dation and the other drawback is that it does
not support the matching of many schemas di-
rectly.

COMA++ is more complete than BMatch,
it uses many algorithms and selects the most
appropriate function to aggregate them. How-
ever, BMatch is designed for a large scale sce-
nario while COMA++ is able to match only two
schemas at a time.

6.1.2 Similarity Flooding

Similarity Flooding is an algorithm described in
[12] and is based on structural approaches. In-
put schemas are converted into directed labeled
graphs and the aim is to find relationships be-
tween those graphs. The structural rule used is
the following: two nodes from different schemas
are considered similar if their adjacent neigh-
bours are similar. When similar nodes are dis-
covered, this similarity is then propagated to the
adjacent nodes until there is no changes any-
more. As in most of matchers, Similarity Flood-
ing generates mappings for the nodes having a
similarity value above a certain threshold.

This algorithm mainly exploits the labels
with some semantic-based algorithms, like String
Matching, to determine the nodes to which it
should propagate. Similarity Flooding has been
implemented through the Rondo matching tool.
Finally, it supports different formats like XML
Schema and relational database schemas.

Similarity Flooding does not give good results
when labels are often identical, especially for pol-
ysemic terms. Thus involving wrong mappings
to be discovered by propagation.

BMatch uses the same structural rule stat-
ing that two nodes from different schemas are
similar if most of their neighbour are similar.
But BMatch is a combination of terminological
and structural measures while Similarity Flood-
ing uses only terminological measures as an ini-
tial step, and then the structural aspect to refine
the initial mappings.

6.1.3 An Approach for Large Schemas
Based on COMA++

To the best of our knowledge, [14] is the only
one previous work dealing with large schemas,
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using COMA++ tool [1]. In this work, first,
the user divides the schema into fragments
and then each fragment from source schema
is mapped to target schema fragments, to find
inter-fragment matching. Next, these fragment
mappings are merged to compute the schema
level mappings. Thus, the tool is not able to
process directly large schemas. Another issue of
this approach [14] is which criteria are the best
for fragmenting the large schemas.

To conclude, the existing tools are semi-
automatic and are designed for small schemas.
Moreover, they did not focus on the performance
aspect, while our method has the following prop-
erties:

• semantic aspect ensuring an acceptable
matching quality

• designed for processing large schemas

• scalable

6.2 Similarity Measures

To calculate the semantic similarity between two
labels, there exists many measures which are of-
ten cited in the literature [7, 2, 11].

6.2.1 Jaro Winkler distance

The Jaro-Winkler distance [18] is a measure of
similarity between two strings. It is a variant of
the Jaro distance metric.

As Jaro-Winkler, with its character compar-
ison and its transpositions, is quite close to n-
grams and levenhstein distance, thus we use
n-grams and levenhstein distance in our ap-
proach.

6.2.2 Maedche et al.

In [11], an approach to measure the similarity
between two (parts of) ontologies is proposed.
These measures are both lexical and conceptual
and compute how one ontology covers the
other. The lexical part is ensured by the String
Matching, which is mainly based on Levenhstein
distance. The conceptual part refers to the
upwards cotopy, which gathers the super- and
sub-concepts of a given concept while taking
into account the position in the hierarchy of this
given concept. An experiment section enables
to study the efficiency of the proposed measures
on real-world scenario.

The lexical layer only relies on Levenhstein
distance, therefore can be quite deceptive in
some cases. For example, two labels, like tower
and power, have totally different meanings but
they will be considered as very similar. The co-
topy measure could be compared to our context
notion, however the relationships between ele-
ments of an ontology are predefined. On the con-
trary, relationships between elements of schema
are not as explicit, thus our context needs to
compute some weights to measure the impor-
tance of neighbour elements. Besides, limiting
the cotopy to the super- and sub-concepts is re-
strictive.

6.2.3 Ehrig et al

The authors present in [6] a framework to
measure similarities between ontologies. It is
based on three layers: the data layer, which
aims at discovering similarities between in-
stances. The edit distance is the measure
used by this layer. This also enables to detect
duplicates values that could be mismatched.
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The second layer is the ontology layer in which
semantic relationship are considered. Several
heuristics can determine the similarity of two
entities by comparing their hierarchies, the
specific relationships like restrictions, etc. Some
similarity measures from the data layer can also
be useful here, for example to provide initial
similarities. Finally, the context layer relies on
the following assumption: similar entities are
used in similar contexts. This context gathers
the user’s resources, i.e the stored information
and the executed queries. An amalgamation
function is in charge of computing the similarity
results of the three layers, and some experiments
with Bibster application are described.

Even if this approach and BMatch uses an
amalgamation function to combine several simi-
larity values, both methods differ from the fact
that in the schema matching domain, the data
and an ontology are rarely available for dif-
ferent reasons: difficulties to build an ontol-
ogy, privacy or lack of data... Thus, using
these resources are often optional while trying to
match schemas. Concerning the context, Ehrig
et al gather within this notion all information
around the user (queries, stored information)
while BMatch consider the context as the most
important6 neighbour nodes of a given node in a
schema. Both approaches are definitely different
and it seems difficult to compare the results of
their experiments.

7 Concluding Remarks

In this paper, we have presented our BMatch ap-
proach to improve the time elapsed on schema
matching. Our approach deals with both the se-

6Importance with regards to semantics

mantic aspect by relying on terminological and
structural measures and performance aspect by
using an indexing structure, the B-tree. More-
over, our method is not language-dependent and
it does not rely on dictionaries or ontologies. It
is also quite flexible with different parameters.

For the semantic aspect, the terminological
approaches enable to discover elements repre-
sented by close character strings. On the other
hand, the structural measures compare the con-
texts of two elements using the cosine mea-
sure. Experiments have shown that BMatch and
COMA++ matching quality are similar, with a
F-score above 0.7.

To evaluate the benefit provided by the index
structure, we made some comparisons between
BMatch alone and BMatch without any index-
ing structure. The experiments have shown
that the B-tree indexing structure enables to
improve performance in most cases, especially
when the number of information that needs
to be stored becomes important. An indexing
structure could be needed when the schemas
are either very large or numerous. Note that
the B-tree can directly store the mappings into
memory. Furthermore, experiments also showed
that BMatch is able to match large schemas
faster than COMA++ or Similarity Flooding.

The results of our experiments are very inter-
esting and showing that our method is scalable
and provide good performance while ensuring an
acceptable matching quality. We are planning to
seek for schemas involving more heterogeneity,
thus we need to enhance BMatch by adding spe-
cific parsers for each format file. Another part
of our ongoing work is to detect complex map-
pings and remove irrelevant ones, probably by
an automatic post-match process.
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