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Abstract

The claim of the paper is that Evolutionary
Learning is a source of diverse hypotheses
“for free”, and this specificity can be used
to combine in an ensemble the hypotheses
learned in independent runs. The aim of our
algorithm named Broger (Bagging-ROC
GEnetic LEarneR) consists of optimizing the
Area Under the ROC Curve using Evolution-
ary Learning. This paper first presents the
theoretical framework of Broger and then
its application to a Term Extraction task in
Text Mining.

1. Introduction

The Area Under the ROC curve (AUC) has been used
as a learning criterion in many works (Mozer et al.,
2001, Ferri et al., 2002, Rosset, 2004, Cortes & Mohri,
2005) since Bradley’s seminal paper (Bradley, 1997).

Although this criterion, shown equivalent to the
Wilcoxon ranking test, offers good stability proper-
ties after the theoretical and experimental studies con-
ducted by (Rosset, 2004), it suffers from the fact that
it induces an ill-posed learning optimisation problem.

This learning problem has mostly been tackled using
greedy optimization, for learning decision trees (Ferri
et al., 2002), or evolutionary optimization (Goldberg,
1989, Bäck, 1995, Goldberg, 2002), for learning Neu-
ral Nets (Fogel, 1998) or linear hypotheses (Mozer
et al., 2001, Sebag et al., 2003b, Sebag et al., 2003a).
Other attempts have been done to convert the under-
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lying (discontinuous) optimisation problem into a con-
tinuous one, amenable to gradient-based optimisation
(Herschtal & Raskutti, 2004, Rakotomamonjy, 2004).

This paper, inspired by Ensemble Learning (Breiman,
1998, Freund et al., 2003), investigates the free source
of diverse hypotheses offered by evolutionary AUC-
based learning.

Specifically, the aggregation (bagging) of the diverse
hypotheses produced along independent evolutionary
learning runs (with different random seeds, everything
else being equal) is defined according to the AUC cri-
terion.

The approach extends earlier work, devoted to evo-
lutionary learning of linear hypotheses (Sebag et al.,
2003b, Sebag et al., 2003a) or (a restricted form of)
non-linear hypotheses (Jong et al., 2004) optimizing
the AUC criterion.

Based on the above algorithm named Roger (ROc-
based GEnetic LearneR), the Broger (Bagging
Roger) algorithm outputs the aggregation of the T
hypotheses constructed along T independent runs of
Roger.

The comparative validation of Broger is conducted
on two Terminology extraction applications (involving
different domains, biology vs human resources) and
different languages, English vs French). Terminology
Extraction, a key step in Text Mining (Bourigault
& Jacquemin, 1999, Daille, 1996), is concerned with
extracting the relevant collocations of tagged words.
Given a few collocations, manually labelled as rele-
vant/irrelevant, terminology extraction can be formal-
ized as a classification problem (Vivaldi et al., 2001).

The AUC-based approach can be viewed as partic-
ularly relevant to terminology extraction. On one
hand, terminology extraction can be viewed as a rank-
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ing problem (term t1 is more relevant than term t2),
rather than a classification problem (term t1 is rel-
evant/irrelevant). On the other hand, the Wilcoxon
ranking test, equivalent to the AUC, is naturally suited
to the evaluation of ranking functions.

The experimental study, comparing Broger with
standard Support Vector Machines (Collobert & Ben-
gio, 2001) and the classical statistical relevance mea-
sures used in terminology extraction (see Section 4),
shows a significant edge of the proposed approach.

This paper is organized as follows. Section 2 briefly in-
troduces and discusses the AUC criterion. For the sake
of self-containedness, section 3 describes the Roger
algorithm, first presented in (Sebag et al., 2003a) and
extended in (Jong et al., 2004).

2. The Area Under the ROC Curve

This section describes and discusses the state-of-the-
art in ROC-based learning.

2.1. The ROC Curve

The ROC (Receiver Operating Characteristics) curve
(Jin et al., 2003), intensively used in medical data anal-
ysis, shows the trade-off between the true positive rate
(the fraction of positive examples that are correctly
classified, aka recall) and the false positive rate (the
fraction of negative examples that are misclassified)
achieved by a given hypothesis/classifier/learning al-
gorithm. Therefore, the Area Under the ROC curve
(AUC) does not depend on the imbalance of the train-
ing set (Kolcz et al., 2003), as opposed to other mea-
sures such as F score (Caruana & Niculescu-Mizil,
2004). The ROC curve also shows the misclassification
rates achieved depending on the error cost coefficients
(Domingos, 1999). For these reasons, (Bradley, 1997)
argues the comparison of the ROC curves attached to
two learning algorithms to be more fair and informa-
tive, than comparing their misclassification rates only.

2.2. Wilcoxon ranking test

Using the standard notations for binary concept learn-
ing, the dataset E is noted as:

E = {(xi, yi), i = 1..n,xi ∈ X, yi ∈ Y = {−1, +1}}

As shown in (Jin et al., 2003), the Area Under the
ROC Curve is equivalent to the Wilcoxon ranking test,
measuring the probability that a hypothesis h ranks xi

lower than xj when xi is a positive and xj is a negative
example:

W(h) = Pr(h(xi) < h(xj) | yi > yj) (1)

This criterion, with quadratic complexity in the num-
ber n of examples1 offers an increased stability com-
pared to the misclassification rate (Pr(h(xi).yi < 0),
with linear complexity in n); see (Rosset, 2004) and
references therein.

Another tentative explanation for the good behavior of
the above criterion, is that its formulation is equally
suited to binary classification or regression problems.

2.3. AUC-based learning

Accordingly, the Area Under the ROC curve defines a
new learning criterion, used e.g. for the evolutionary
optimization of neural nets (Fogel, 1998), or the greedy
search of decision trees (Ferri et al., 2002).

It must be noted that the AUC optimization problem
is intrinsically ill posed, in the following sense.

Consider the space of linear continuous hypotheses
H = IRd. The AUC criterion maps this continuous
space onto a finite number of values, at most n! if n
is the number of examples: two hypotheses inducing
the same ranking on the training set have the same
AUC. Confidence intervals on AUC values have been
proposed accordingly by (Cortes & Mohri, 2005).

In other words, the fitness landscape defined by the
AUC criterion is made of a collection of plateaus, as
AUC(h) is almost surely continuous wrt h coefficients,
and discontinuities occur when some positive examples
outpass a negative example, and vice versa.

3. Overview of Broger

For the sake of self containedness, this section first re-
calls the Roger algorithm, before describing the bag-
ging of evolutionary ROC-based hypotheses, achieved
in Broger. In the remainder of the paper, the in-
stance space X is that of d-dimensional real-valued
vectors X = IRd.

3.1. Roger

Roger implements the optimisation of the AUC cri-
terion on the hypothesis search space H. Two types
of hypothesis space have been considered: linear hy-
potheses (Sebag et al., 2003b, Sebag et al., 2003a,
Roche et al., 2004a); and a restricted form on non-
linear hypotheses (Jong et al., 2004).

Specifically, Roger uses an evolution strategy; the
interested reader is referred to (Bäck, 1995) for a

1Actually, the computational complexity is in
O(n log n) since W(h) is proportional to the sum of
ranks of the positive examples.
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comprehensive presentation. Evolution strategies are
among the evolutionary computation algorithms best
suited to continuous optimization, due to the specific
variation operators developed for evolution of real-
valued genotypes (e.g. self adaptive mutation and ex-
tended versions thereof (Auger et al., 2004)).

In the rest of the paper, Roger employs a (µ+λ)-ES,
involving the generation of λ offspring from µ parents
through uniform crossover and self-adaptive mutation,
and deterministically selecting the next µ parents from
the best µ parents + λ offspring.

In a first step (Sebag et al., 2003b), the search space H
considered is that of linear hypotheses (H = IRd, where
d is the number of real-valued or boolean features). To
genotype w (vector in IRd) is associated the phenotype
hw, hypothesis defined on the instance space X = IRd

as:
hw(x) = < w, x >

Hypothesis hw defines an order on the training set E ,
which is evaluated after the Wilcoxon rank test (Eq.
1): the fitness of hw is given as:

F(hw) = #{(i,j) s.t. ( (hw(xi)>hw(xj))∧(yi>yj) )}
#{(i,j) s.t. (yi>yj)}

∝∑
yi>0 rank(hw(xi))

(2)

3.2. Non linear hypotheses

Linear hypotheses are intrinsically ill-suited to many
application domains, particularly pertaining to prefer-
ence learning and medical domains, where more does
not mean better; e.g., physiological indicators such as
blood pressure, should neither be too high nor too low
for a good health state; the gastronomic taste requires
enough but not too much salt.

For this reason, a limited kind of non-linear hypothe-
ses was considered in (Jong et al., 2004, Roche et al.,
2004a). The new hypothesis search space H achieves
a tradeoff between the non-linear function complexity,
and the computational complexity, as follows.

A genotype individual is made of a pair (w, c) (in IR2d),
where w ∈ IRd is a weight vector as in the linear
case, and c is a center point in IRd. The associated
phenotype hw,c is defined on the instance space X as
the weighted L1 distance between the current example
x = (x1, . . . , xd) and the center c = (c1, . . . , cd)

hw,c(x) =
d∑

i=1

wi|xi − ci| (3)

Likewise, hw,c defines an order on the training set, and
the fitness F(hw,c) is defined as above.

It must be noted that this representation allows
Roger for searching (a limited kind of) non linear
hypotheses, by (only) doubling the size of the linear
search space. Previous work has shown that non-linear
Roger significantly outperforms linear Roger for
some text mining applications (Roche et al., 2004a).

3.3. Ensemble for free with Evolutionary
Learning

In this paper, inspired from (Breiman, 1998, Imamura
et al., 2002), the free source of diversity offered by
Evolutionary Computation is exploited to construct
ensemble ranking functions.

Ensemble learning, one of the prominent domains
of Machine Learning since (Schapire, 1990), includes
the bagging of independently learned hypotheses
(Breiman, 1998), and the boosting of sequentially
learned hypotheses (Freund et al., 2003).

The Broger algorithm aggregates the ranking func-
tions h1, . . . , hT learned by T independent Roger
runs (with different random seeds, everything else be-
ing equal).

Several aggregation procedures have been considered:
to each example x, Broger associates the average or
median value in {h1(x), . . . , hT (x)} (after normaliza-
tion of the his); or its average or median rank. In-
terestingly, preliminary experiments have shown no
significant difference between the above aggregation
procedures, with respect to the AUC criterion of the
bagged hypothesis (measured by cross validation).

In the rest of the paper, Broger associates to example
x the median value in {h1(x), . . . , hT (x)} (Alg. 1).

Algorithm 1 Broger

Require:
h1, . . . , hT : T hypotheses
x: example

Ensure:
H(x) = {}
Begin
for (t← 1; t ≤ T ; t + +) do

compute ht(x)
H(x) = H(x)

⋃ {ht(x)}
end for
H ′(x) = sort(H(x))
Return the median value in H ′(x)
End



Bagging Evolutionary Hypotheses

4. Application to Terminology
Extraction

Besides the known difficulties of Data Mining, Text
Mining presents specific difficulties due to the struc-
ture of natural language. In particular, the polysemy
and synonymy effects are dealt with by constructing
ontologies or terminologies (Bourigault & Jacquemin,
1999), structuring the words and their meanings in the
domain application. Terminology Extraction (TE),
a preliminary step for ontology construction, is con-
cerned with extracting the relevant terms, or word
collocations, attached to the expert’s concepts (Bouri-
gault & Jacquemin, 1999, Smadja, 1993).

Terminology extraction can be formalized as a classi-
fication problem (Vivaldi et al., 2001); it can also be
formalized as a ranking problem (Cohen et al., 1999).

The literature presents a variety of a priori ranking
criteria, mostly based on statistical measures about
the word occurrences (see e.g., (Daille et al., 1998, Xu
et al., 2002, Roche et al., 2004b)). (Vivaldi et al.,
2001) used three of these criteria as term features;
an extended set of features is used in the following.
Specifically, a term example is described as a vector
of values computed after the following 13 statistical
measures:

• Mutual Information (MI) (Church & Hanks, 1990)

• Mutual Information with cube (MI3) (Daille et al.,
1998)

• Dice Coefficient (Dice) (Smadja et al., 1996)

• Log-likelihood (L) (Dunning, 1993)

• Number of occurrences + Log-likelihood (OccL)2

(Roche et al., 2004a)

• Association Measure (Ass) (Jacquemin, 1997)

• Sebag-Schoenauer (SeSc) (Sebag & Schoenauer,
1988)

• J-measure (J) (Goodman & Smyth, 1988)

• Conviction (Conv) (Brin et al., 1997)

• Least contradiction (LC) (Azé & Kodratoff, 2004)

• Cote multiplier (CM) (Lallich & Teytaud, 2004)

• Khi2 test used in text mining (Khi2) (Manning &
Schütze, 1999)

• T-test used in text mining (Ttest) (Manning &
Schütze, 1999)

2OccL is defined by ranking collocations according to
their number of occurrences, and breaking the ties based
on the term Log-likelihood.

5. Goals of Experiments and
Experimental Setting

The goal of experiments is twofold. On one hand, the
ranking efficiency of Broger will be assessed and com-
pared to that of state-of-the-art supervised learning
algorithms, specifically Support Vector Machines with
linear, quadratic and Gaussian kernels, using SVM-
Torch implementation3 with default options.

On the other hand, the results provided by Broger
will be examined with respect to their generality and
intelligibility.

The experimental setting involves 5-fold stratified
cross-validation, averaged over 10 independent strati-
fications. On each fold, hypotheses learned by SVM
and Broger are evaluated on the test set and the
corresponding ROC curves are constructed.

The Roger parameters are as follows: µ = 20; λ =
200; the self adaptative mutation rate is 1.0; the uni-
form crossover rate is 0.6.

6. Empirical validation

After describing the datasets, this section reports on
the comparative performances of the algorithms, and
inspects the results actually provided by Broger.

6.1. Datasets

In both domains, the data preparation step (Roche
et al., 2004b) allows for categorizing the word colloca-
tions depending on the grammatical tag of the words
(e.g. Adjective, Noun).

A first corpus related to Molecular Biology involves
6119 paper abstracts in English (9,4 Mb) gathered
from queries on Medline4. The 1028 Noun-Noun col-
locations occurring more than 4 times are labelled by
the expert; the dataset includes a huge majority of
relevant collocations.

A second corpus related to Curriculum Vitæ (CV)5

involves 582 CVs in French (952 Kb). The “Frequent
CV” dataset includes the 376 Noun-Adjective colloca-
tions with at least 3 occurrences (two hours labelling
required), with a huge majority of relevant colloca-
tions. The “Infrequent CV” dataset includes the 2822
Noun-Adjective collocations occurring once or twice
(two days labelling required), with a significantly dif-
ferent distribution of relevant/irrelevant collocations.

3http://www.idiap.ch/machine learning.php?content=
Torch/en OldSVMTorch.txt

4http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
5Courtesy of the VediorBis Foundation.
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Collocations # Relevant Irrelevant
Molecular Biology (MB) 1028 90.9% 9.1%

Frequent CV (F-CV) 376 85.7% 14.3%
Infrequent CV (I-CV) 2822 56.6% 43.4%

Table 1. Relevant and irrelevant collocations.

Corpus Broger SVM (∼ 1.5s/fold)
(∼ 17s/fold) Linear Gaussian Quadratic

MB 0.73± 0.05 0.50± 0.08 0.46± 0.08 0.59± 0.08
F-CV 0.64± 0.08 0.48± 0.08 0.48± 0.08 0.50± 0.10
I-CV 0.73± 0.01 0.72± 0.01 0.72± 0.02 0.71± 0.02

Table 2. Ranking accuracy (Area under the ROC curve) of
learning algorithms. Computational times are given for a
Pentium 4 (3GHz, 512 Mb of RAM).

Table 1 presents these two corpora with details on dis-
tribution of relevant/irrelevant collocations.

6.2. Ranking accuracy

After the experimental setting described in Section
5, Table 2 compares the average AUC achieved for
Broger and SVMTorch with linear, Gaussian and
quadratic kernels. On these domain applications, both
supervised learning approaches significantly improve
on the standalone statistical criteria (Table 3). Fur-
ther, Broger improves significantly on SVM using
any kernel, excepted on the Infrequent CV dataset. A
tentative interpretation for this result is based on the
fact that this dataset is the most balanced one; SVM
has some difficulties to cope with imbalanced datasets.

A more detailed picture is provided by Fig. 1, showing
the ROC curve associated to SVM, Broger and the
OccL and J measures on the Frequent CV dataset on
a Representative Fold corresponding to the function
the most used by Broger (termed RF in this paper).
Interestingly, the major differences between Broger
and the other measures are seen at the beginning of the
curve, i.e. they concern the top ranked collocations.
Typically, a recall (True Positive Rate) of 50% is ob-
tained for 18% false positive with Broger, against
23% with OccL, 31% with J measures and 68% for
quadratic SVM6.

In summary, Broger improves the accuracy of the
top-ranked collocations, and therefore the satisfaction
and productivity of the expert if he/she only examines
the top ranked terms.

6.3. Analysis of a ranking function

As shown in (Jong et al., 2004), the weights associ-
ated to distinct features by Roger can provide some

6SVM ROC Curves is not significant as its AUC is lower
than 0.5 on this test fold.

Corpus MI MI3 Dice L OccL Ass J

MB 0.30 0.35 0.31 0.42 0.57 0.31 0.59
F-CV 0.31 0.40 0.39 0.43 0.58 0.32 0.58
I-CV 0.29 0.30 0.33 0.30 0.37 0.29 0.50

Corpus Conv SeSc CM LC Ttest Khi2

MB 0.35 0.43 0.31 0.46 0.31 0.31
F-CV 0.39 0.40 0.31 0.44 0.36 0.36
I-CV 0.40 0.39 0.30 0.45 0.30 0.30

Table 3. Ranking accuracy (Area under the ROC curve) of
statistical criteria.
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Figure 1. ROC Curves on Frequent Collocations of CV cor-
pus (for the test set of RF ).

insights into the relevance of the features. Accordingly,
the hypotheses constructed by Broger are examined,
focusing on the features (statistical criteria) with high
weights.

As expected, Roger detects, on the Frequent CV
dataset (F-CV), that the mutual information (MI)
criterion does badly (AUC(MI)= 0.31, Table 3), with
a high center cMI = 0.59 and weight wMI = 0.68
values (collocations with high MI are less relevant,
everything else being equal). Inversely, as the OccL

criterion does well (AUC(OccL) = 0.58), the center
cOccL

= 0.65 is high associated with a highly negative
weight wOccL

= −0.41 (collocations with low OccL are
less relevant, everything else being equal).

Although these tendencies could have been exploited
by linear hypotheses, this is no longer the case for the J
criterion (AUC(J) = 0.58): interestingly, the center cJ

takes on a medium value, with a high negative weight
wJ . This is interpreted as collocations with either too
low or too high values of J , are less relevant everything
else being equal.

Figure 2 shows the weights associated by Broger to
the 13 measures.

A more detailed analysis, including comparison of col-
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locations ranked according to different measures, can
be find in (Azé et al., 2005).

7. Discussion and Perspectives

A first claim of the paper is that Evolutionary Learn-
ing is a source of diverse hypotheses “for free”, and
this specificity can be used to combine in an ensemble
the hypotheses learned in independent runs. Previous
attempts have been done for incorporating ensemble-
based approaches in Evolutionary Computation (Iba,
1999, Imamura et al., 2002), but to our best knowl-
edge, the simple combination of hypotheses derived
from independent runs is new.

A second claim of the paper is that supervised learn-
ing can significantly contribute to the Term Extrac-
tion task in Text Mining. Based on a domain- and
language- independent description of the terms along
a set of standard statistical criteria, and on a few col-
locations manually labelled as relevant/irrelevant by
the expert, a ranking hypothesis is learned.

Further research is concerned with incorporating
multi-modal optimization (Deb, 2001) in AUC-based
evolutionary learning, in the line of (Lee & Yao, 2004);
the advantage of the approach would be to extract sev-
eral different and complementary hypotheses from a
single run.

Another on-going work is concerned with enriching the
description of terms, e.g. adding typography-related
indications (e.g. distance to the closest typographic
signs) or distance to the closest Noun, possibly provid-
ing additional cues on the role of relevant collocations.

A long-term goal is to study along a variety of domain
applications and expert goals, the eventual regularities

associated to i) the (domain and language indepen-
dent) description of the relevant collocations; ii) the
ranking hypotheses.
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